Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-04T05:50:50.743Z Has data issue: false hasContentIssue false

Nicotine exposure during breastfeeding alters the expression of endocannabinoid system biomarkers in female but not in male offspring at adulthood

Published online by Cambridge University Press:  23 February 2023

Rosiane Aparecida Miranda
Affiliation:
Laboratory of Endocrine Physiology, Biology Institute, Rio de Janeiro State University, RJ, Brazil
Vanessa Silva Tavares Rodrigues
Affiliation:
Laboratory of Endocrine Physiology, Biology Institute, Rio de Janeiro State University, RJ, Brazil
Thamara Cherem Peixoto
Affiliation:
Laboratory of Endocrine Physiology, Biology Institute, Rio de Janeiro State University, RJ, Brazil
Alex C. Manhães
Affiliation:
Laboratory of Neurophysiology, Biology Institute, Rio de Janeiro State University, RJ, Brazil
Egberto Gaspar de Moura
Affiliation:
Laboratory of Endocrine Physiology, Biology Institute, Rio de Janeiro State University, RJ, Brazil
Patricia Cristina Lisboa*
Affiliation:
Laboratory of Endocrine Physiology, Biology Institute, Rio de Janeiro State University, RJ, Brazil
*
Address for correspondence: Dr. Patrícia Cristina Lisboa, Physiological Sciences Department; Biology Institute, Rio de Janeiro State University, 28 DE Setembro Avenue, 87, Rio de Janeiro, RJ, 20551-031, Brazil. Email: [email protected]

Abstract

Early nicotine exposure compromises offspring’s phenotype at long-term in both sexes. We hypothesize that offspring exposed to nicotine during breastfeeding show deregulated central and peripheral endocannabinoid system (ECS), compromising several aspects of their metabolism. Lactating rats received nicotine (NIC, 6 mg/Kg/day) or saline from postnatal day (PND) 2 to 16 through implanted osmotic minipumps. Offspring were analyzed at PND180. We evaluated protein expression of N-acylphosphatidylethanolamide-phospholipase D (NAPE-PLD), fatty acid amide hydrolase (FAAH), diacylglycerol lipase (DAGL), monoacylglycerol lipase (MAGL) and cannabinoid receptors (CB1 and/or CB2) in lateral hypothalamus, paraventricular nucleus of the hypothalamus, liver, visceral adipose tissue (VAT), adrenal and thyroid. NIC offspring from both sexes did not show differences in hypothalamic ECS markers. Peripheral ECS markers showed no alterations in NIC males. In contrast, NIC females had lower liver DAGL and CB1, higher VAT DAGL, higher adrenal NAPE-PLD and higher thyroid FAAH. Endocannabinoids biosynthesis was affected by nicotine exposure during breastfeeding only in females; alterations in peripheral tissues suggest lower action in liver and higher action in VAT, adrenal and thyroid. Effects of nicotine exposure during lactation on ECS markers are sex- and tissue-dependent. This characterization helps understanding the phenotype of the adult offspring in this model and may contribute to the development of new pharmacological targets for the treatment of several metabolic diseases that originate during development.

Type
Original Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press in association with International Society for Developmental Origins of Health and Disease

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barker, DJ. The developmental origins of adult disease. J Am Coll Nutr. 2004; 23(6 Suppl.), 588S595S. DOI 10.1080/07315724.2004.10719428.CrossRefGoogle ScholarPubMed
Haugen, AC, Schug, TT, Collman, G, Heindel, JJ. Evolution of DOHaD: the impact of environmental health sciences. J Dev Orig Health Dis. 2015; 6(2), 5564. DOI 10.1017/S2040174414000580.CrossRefGoogle ScholarPubMed
Bahadori, B, Riediger, ND, Farrell, SM, Uitz, E, Moghadasian, MF. Hypothesis: smoking decreases breast feeding duration by suppressing prolactin secretion. Med Hypotheses. 2013; 81(4), 582586. DOI 10.1016/j.mehy.2013.07.007.CrossRefGoogle ScholarPubMed
Horta, BL, Victora, CG, Menezes, AM, Barros, FC. Environmental tobacco smoke and breastfeeding duration. Am J Epidemiol. 1997; 146(2), 128133. DOI 10.1093/oxfordjournals.aje.a009243.CrossRefGoogle ScholarPubMed
Napierala, M, Mazela, J, Merritt, TA, Florek, E. Tobacco smoking and breastfeeding: effect on the lactation process, breast milk composition and infant development. A critical review. Environ Res. 2016; 151, 321338. DOI 10.1016/j.envres.2016.08.002.CrossRefGoogle ScholarPubMed
Somm, E, Schwitzgebel, VM, Vauthay, DM, et al. Prenatal nicotine exposure alters early pancreatic islet and adipose tissue development with consequences on the control of body weight and glucose metabolism later in life. Endocrinology. 2008; 149(12), 62896299. DOI 10.1210/en.2008-0361.CrossRefGoogle ScholarPubMed
Marcham, CL, Floyd, EL, Wood, BL, Arnold, S, Johnson, DL. E-cigarette nicotine deposition and persistence on glass and cotton surfaces. J Occup Environ Hyg. 2019; 16(5), 349354. DOI 10.1080/15459624.2019.1581366.CrossRefGoogle ScholarPubMed
Anastopoulos, I, Pashalidis, I, Orfanos, AG, et al. Removal of caffeine, nicotine and amoxicillin from (waste)waters by various adsorbents. A review. J Environ Manage. 2020; 261, 110236. DOI 10.1016/j.jenvman.2020.110236.CrossRefGoogle ScholarPubMed
Selmar, D, Radwan, A, Abdalla, N, et al. Uptake of nicotine from discarded cigarette butts - a so far unconsidered path of contamination of plant-derived commodities. Environ Pollut. 2018; 238, 972976. DOI 10.1016/j.envpol.2018.01.113.CrossRefGoogle Scholar
Li, Z, Li, Z, Zhang, J, et al. Using nicotine in scalp hair to assess maternal passive exposure to tobacco smoke. Environ Pollut. 2017; 222, 276282. DOI 10.1016/j.envpol.2016.12.044.CrossRefGoogle ScholarPubMed
Miranda, RA, Gaspar de Moura, E, Lisboa, PC. Tobacco smoking during breastfeeding increases the risk of developing metabolic syndrome in adulthood: lessons from experimental models. Food Chem Toxicol. 2020; 144, 111623. DOI 10.1016/j.fct.2020.111623.CrossRefGoogle ScholarPubMed
Miranda, RA, de Moura, EG, Soares, PN, et al. Thyroid redox imbalance in adult Wistar rats that were exposed to nicotine during breastfeeding. Sci Rep. 2020; 10(1), 15646. DOI 10.1038/s41598-020-72725-w.CrossRefGoogle ScholarPubMed
Peixoto, TC, Moura, EG, Soares, PN, et al. Nicotine exposure during lactation causes disruption of hedonic eating behavior and alters dopaminergic system in adult female rats. Appetite. 2021; 160, 105115. DOI 10.1016/j.appet.2021.105115.CrossRefGoogle ScholarPubMed
Hillard, CJ. Endocannabinoids and the endocrine system in health and disease. Handb Exp Pharmacol. 2015; 231, 317339. DOI 10.1007/978-3-319-20825-1_11.CrossRefGoogle ScholarPubMed
Pagotto, U, Marsicano, G, Cota, D, Lutz, B, Pasquali, R. The emerging role of the endocannabinoid system in endocrine regulation and energy balance. Endocr Rev. 2006; 27(1), 73100. DOI 10.1210/er.2005-0009.CrossRefGoogle ScholarPubMed
Zdanowicz, A, Kazmierczak, W, Wierzbinski, P. [The endocannabinoid system role in the pathogenesis of obesity and depression]. Pol Merkur Lekarski. 2015; 39(229), 6166. DOI doi.Google ScholarPubMed
Hu, SS, Mackie, K. Distribution of the endocannabinoid system in the central nervous system. Handb Exp Pharmacol. 2015; 231, 5993. DOI 10.1007/978-3-319-20825-1_3.CrossRefGoogle ScholarPubMed
Ruminska, A, Dobrzyn, A. [The endocannabinoid system and its role in regulation of metabolism in peripheral tissues]. Postepy Biochem. 2012; 58(2), 127134. DOI doi.Google ScholarPubMed
Zou, S, Kumar, U. Cannabinoid receptors and the endocannabinoid system: signaling and function in the central nervous system. Int J Mol Sci. 2018; 19(3 10.3390/ijms19030833.CrossRefGoogle ScholarPubMed
Howlett, AC, Barth, F, Bonner, TI, et al. International Union of Pharmacology. XXVII. Classification of cannabinoid receptors. Pharmacol Rev. 2002; 54(2), 161202. DOI 10.1124/pr.54.2.161.CrossRefGoogle ScholarPubMed
Kilaru, A, Chapman, KD. The endocannabinoid system. Essays Biochem. 2020; 64(3), 485499. DOI 10.1042/EBC20190086.Google ScholarPubMed
Mechoulam, R, Parker, LA. The endocannabinoid system and the brain. Annu Rev Psychol. 2013; 64(1), 2147. DOI 10.1146/annurev-psych-113011-143739.CrossRefGoogle ScholarPubMed
Quarta, C, Mazza, R, Obici, S, Pasquali, R, Pagotto, U. Energy balance regulation by endocannabinoids at central and peripheral levels. Trends Mol Med. 2011; 17(9), 518526. DOI 10.1016/j.molmed.2011.05.002.CrossRefGoogle ScholarPubMed
Sanchez-Fuentes, A, Marichal-Cancino, BA, Mendez-Diaz, M, Becerril-Melendez, AL, Ruiz-Contreras, AE, Prospero-Garcia, O. mGluR1/5 activation in the lateral hypothalamus increases food intake via the endocannabinoid system. Neurosci Lett. 2016; 631, 104108. DOI 10.1016/j.neulet.2016.08.020.CrossRefGoogle ScholarPubMed
Richard, D, Guesdon, B, Timofeeva, E. The brain endocannabinoid system in the regulation of energy balance. Best Pract Res Clin Endocrinol Metab. 2009; 23(1), 1732. DOI 10.1016/j.beem.2008.10.007.CrossRefGoogle ScholarPubMed
Peterfi, Z, Farkas, I, Denis, RGP, et al. Endocannabinoid and nitric oxide systems of the hypothalamic paraventricular nucleus mediate effects of NPY on energy expenditure. Mol Metab. 2018; 18, 120133. DOI 10.1016/j.molmet.2018.08.007.CrossRefGoogle ScholarPubMed
Barna, I, Zelena, D, Arszovszki, AC, Ledent, C. The role of endogenous cannabinoids in the hypothalamo-pituitary-adrenal axis regulation: in vivo and in vitro studies in CB1 receptor knockout mice. Life Sci. 2004; 75(24), 29592970. DOI 10.1016/j.lfs.2004.06.006.CrossRefGoogle ScholarPubMed
Wang, M, Meng, N, Chang, Y, Tang, W. Endocannabinoids signaling: molecular mechanisms of liver regulation and diseases. Front Biosci (Landmark Ed). 2016; 21(7), 14881501. DOI 10.2741/4468.Google ScholarPubMed
Silvestri, C, Ligresti, A, Di Marzo, V. Peripheral effects of the endocannabinoid system in energy homeostasis: adipose tissue, liver and skeletal muscle. Rev Endocr Metab Disord. 2011; 12(3), 153162. DOI 10.1007/s11154-011-9167-3.CrossRefGoogle ScholarPubMed
Ziegler, CG, Mohn, C, Lamounier-Zepter, V, et al. Expression and function of endocannabinoid receptors in the human adrenal cortex. Horm Metab Res. 2010; 42(2), 8892. DOI 10.1055/s-0029-1241860.CrossRefGoogle ScholarPubMed
Niederhoffer, N, Hansen, HH, Fernandez-Ruiz, JJ, Szabo, B. Effects of cannabinoids on adrenaline release from adrenal medullary cells. Br J Pharmacol. 2001; 134(6), 13191327. DOI 10.1038/sj.bjp.0704359.CrossRefGoogle ScholarPubMed
Porcella, A, Marchese, G, Casu, MA, et al. Evidence for functional CB1 cannabinoid receptor expressed in the rat thyroid. Eur J Endocrinol. 2002; 147(2), 255261. DOI 10.1530/eje.0.1470255.CrossRefGoogle ScholarPubMed
Merritt, LL, Martin, BR, Walters, C, Lichtman, AH, Damaj, MI. The endogenous cannabinoid system modulates nicotine reward and dependence. J Pharmacol Exp Ther. 2008; 326(2), 483492. DOI 10.1124/jpet.108.138321.CrossRefGoogle ScholarPubMed
Gonzalez, S, Cascio, MG, Fernandez-Ruiz, J, Fezza, F, Di Marzo, V, Ramos, JA. Changes in endocannabinoid contents in the brain of rats chronically exposed to nicotine, ethanol or cocaine. Brain Res. 2002; 954(1), 7381. DOI 10.1016/s0006-8993(02)03344-9.CrossRefGoogle ScholarPubMed
Castane, A, Valjent, E, Ledent, C, Parmentier, M, Maldonado, R, Valverde, O. Lack of CB1 cannabinoid receptors modifies nicotine behavioural responses, but not nicotine abstinence. Neuropharmacology. 2002; 43(5), 857867. DOI 10.1016/s0028-3908(02)00118-1.CrossRefGoogle Scholar
World Medical, A, American Physiological, S. Guiding principles for research involving animals and human beings. Am J Physiol Regul Integr Comp Physiol. 2002; 283(2), R281283. DOI 10.1152/ajpregu.00279.2002.Google Scholar
Oliveira, E, Moura, EG, Santos-Silva, AP, et al. Short- and long-term effects of maternal nicotine exposure during lactation on body adiposity, lipid profile, and thyroid function of rat offspring. J Endocrinol. 2009; 202(3), 397405. DOI 10.1677/JOE-09-0020.CrossRefGoogle Scholar
Ypsilantis, P, Politou, M, Anagnostopoulos, C, Kortsaris, A, Simopoulos, C. A rat model of cigarette smoke abuse liability. Comp Med. 2012; 62(5), 395399. DOI doi.Google ScholarPubMed
de Oliveira, E, Moura, EG, Santos-Silva, AP, et al. Neonatal nicotine exposure causes insulin and leptin resistance and inhibits hypothalamic leptin signaling in adult rat offspring. J Endocrinol. 2010; 206(1), 5563. DOI 10.1677/JOE-10-0104.CrossRefGoogle ScholarPubMed
Paxinos, GC, Charles, W. The Rat Brain in Stereotaxic Coordinates: Hard Cover Edition, 2006, 6th edn. Elsevier.Google Scholar
Pagotto, U, Vicennati, V, Pasquali, R. The endocannabinoid system and the treatment of obesity. Ann Med. 2005; 37(4), 270275. DOI 10.1080/07853890510037419.CrossRefGoogle ScholarPubMed
Mazier, W, Saucisse, N, Gatta-Cherifi, B, Cota, D. The endocannabinoid system: pivotal orchestrator of obesity and metabolic disease. Trends Endocrinol Metab. 2015; 26(10), 524537. DOI 10.1016/j.tem.2015.07.007.CrossRefGoogle ScholarPubMed
Adermark, L, Morud, J, Lotfi, A, Ericson, M, Soderpalm, B. Acute and chronic modulation of striatal endocannabinoid-mediated plasticity by nicotine. Addict Biol. 2019; 24(3), 355363. DOI 10.1111/adb.12598.CrossRefGoogle ScholarPubMed
Pinheiro, CR, Oliveira, E, Trevenzoli, IH, et al. Developmental plasticity in adrenal function and leptin production primed by nicotine exposure during lactation: gender differences in rats. Horm Metab Res. 2011; 43(10), 693701. DOI 10.1055/s-0031-1285909.Google ScholarPubMed
Di, S, Malcher-Lopes, R, Halmos, KC, Tasker, JG. Nongenomic glucocorticoid inhibition via endocannabinoid release in the hypothalamus: a fast feedback mechanism. J Neurosci. 2003; 23(12), 48504857. DOI doi.CrossRefGoogle ScholarPubMed
Roberts, CJ, Stuhr, KL, Hutz, MJ, Raff, H, Hillard, CJ. Endocannabinoid signaling in hypothalamic-pituitary-adrenocortical axis recovery following stress: effects of indirect agonists and comparison of male and female mice. Pharmacol Biochem Behav. 2014; 117, 1724. DOI 10.1016/j.pbb.2013.11.026.CrossRefGoogle ScholarPubMed
Farkas, E, Varga, E, Kovacs, B, et al. A glial-neuronal circuit in the median eminence regulates thyrotropin-releasing hormone-release via the endocannabinoid system. iScience. 2020; 23(3), 100921. DOI 10.1016/j.isci.2020.100921.CrossRefGoogle ScholarPubMed
Osei-Hyiaman, D, DePetrillo, M, Pacher, P, et al. Endocannabinoid activation at hepatic CB1 receptors stimulates fatty acid synthesis and contributes to diet-induced obesity. J Clin Invest. 2005; 115(5), 12981305. DOI 10.1172/JCI23057.CrossRefGoogle ScholarPubMed
Kunos, G, Osei-Hyiaman, D. Endocannabinoids and liver disease. IV. Endocannabinoid involvement in obesity and hepatic steatosis. Am J Physiol Gastrointest Liver Physiol. 2008; 294(5), G11011104. DOI 10.1152/ajpgi.00057.2008.CrossRefGoogle ScholarPubMed
Miranda, RA, De Almeida, MM, Rocha, C, et al. Maternal high-fat diet consumption induces sex-dependent alterations of the endocannabinoid system and redox homeostasis in liver of adult rat offspring. Sci Rep. 2018; 8(1), 14751. DOI 10.1038/s41598-018-32906-0.CrossRefGoogle ScholarPubMed
Conceicao, EP, Peixoto-Silva, N, Pinheiro, CR, Oliveira, E, Moura, EG, Lisboa, PC. Maternal nicotine exposure leads to higher liver oxidative stress and steatosis in adult rat offspring. Food Chem Toxicol. 2015; 78, 5259. DOI 10.1016/j.fct.2015.01.025.CrossRefGoogle ScholarPubMed
Bertasso, IM, Pietrobon, CB, Lopes, BP, et al. Programming of hepatic lipid metabolism in a rat model of postnatal nicotine exposure - sex-related differences. Environ Pollut. 2020; 258, 113781. DOI 10.1016/j.envpol.2019.113781.CrossRefGoogle Scholar
van Eenige, R, van der Stelt, M, Rensen, PCN, Kooijman, S. Regulation of adipose tissue metabolism by the endocannabinoid system. Trends Endocrinol Metab. 2018; 29(5), 326337. DOI 10.1016/j.tem.2018.03.001.CrossRefGoogle ScholarPubMed
Di Marzo, V. The endocannabinoid system in obesity and type 2 diabetes. Diabetologia. 2008; 51(8), 13561367. DOI 10.1007/s00125-008-1048-2.CrossRefGoogle ScholarPubMed
Peixoto, TC, Moura, EG, Soares, PN, et al. Nicotine exposure during breastfeeding reduces sympathetic activity in brown adipose tissue and increases in white adipose tissue in adult rats: sex-related differences. Food Chem Toxicol. 2020; 140, 111328. DOI 10.1016/j.fct.2020.111328.CrossRefGoogle ScholarPubMed
Janssen, FJ, van der Stelt, M. Inhibitors of diacylglycerol lipases in neurodegenerative and metabolic disorders. Bioorg Med Chem Lett. 2016; 26(16), 38313837. DOI 10.1016/j.bmcl.2016.06.076.CrossRefGoogle ScholarPubMed
Rouzer, CA, Marnett, LJ. Endocannabinoid oxygenation by cyclooxygenases, lipoxygenases, and cytochromes P450: cross-talk between the eicosanoid and endocannabinoid signaling pathways. Chem Rev. 2011; 111(10), 58995921. DOI 10.1021/cr2002799.CrossRefGoogle ScholarPubMed
Tsuboi, K, Okamoto, Y, Ikematsu, N, et al. Enzymatic formation of N-acylethanolamines from N-acylethanolamine plasmalogen through N-acylphosphatidylethanolamine-hydrolyzing phospholipase D-dependent and -independent pathways. Biochim Biophys Acta. 2011; 1811(10), 565577. DOI 10.1016/j.bbalip.2011.07.009.CrossRefGoogle ScholarPubMed
Newsom, RJ, Garcia, RJ, Stafford, J, et al. Remote CB1 receptor antagonist administration reveals multiple sites of tonic and phasic endocannabinoid neuroendocrine regulation. Psychoneuroendocrino. 2020; 113, 104549. DOI 10.1016/j.psyneuen.2019.104549.CrossRefGoogle ScholarPubMed
Surkin, PN, Gallino, SL, Luce, V, Correa, F, Fernandez-Solari, J, De Laurentiis, A. Pharmacological augmentation of endocannabinoid signaling reduces the neuroendocrine response to stress. Psychoneuroendocrino. 2018; 87, 131140. DOI 10.1016/j.psyneuen.2017.10.015.CrossRefGoogle ScholarPubMed
Borowska, M, Czarnywojtek, A, Sawicka-Gutaj, N, et al. The effects of cannabinoids on the endocrine system. Endokrynol Pol. 2018; 69(6), 705719. DOI 10.5603/EP.a2018.0072.CrossRefGoogle ScholarPubMed
da Veiga, MA, Fonseca Bloise, F, Costa, ESRH, et al. Acute effects of endocannabinoid anandamide and CB1 receptor antagonist, AM251 in the regulation of thyrotropin secretion. J Endocrinol. 2008; 199(2), 235242. DOI 10.1677/JOE-08-0380.CrossRefGoogle ScholarPubMed
Brown, WH, Gillum, MP, Lee, HY, et al. Fatty acid amide hydrolase ablation promotes ectopic lipid storage and insulin resistance due to centrally mediated hypothyroidism. Proc Natl Acad Sci U S A. 2012; 109(37), 1496614971. DOI 10.1073/pnas.1212887109.CrossRefGoogle ScholarPubMed
Riebe, CJ, Hill, MN, Lee, TT, Hillard, CJ, Gorzalka, BB. Estrogenic regulation of limbic cannabinoid receptor binding. Psychoneuroendocrino. 2010; 35(8), 12651269. DOI 10.1016/j.psyneuen.2010.02.008.CrossRefGoogle ScholarPubMed
Almeida, MM, Dias-Rocha, CP, Souza, AS, et al. Perinatal maternal high-fat diet induces early obesity and sex-specific alterations of the endocannabinoid system in white and brown adipose tissue of weanling rat offspring. Br J Nutr. 2017; 118(10), 788803. DOI 10.1017/S0007114517002884.CrossRefGoogle Scholar
de Almeida, MM, Dias-Rocha, CP, Reis-Gomes, CF, et al. Maternal high-fat diet up-regulates type-1 cannabinoid receptor with estrogen signaling changes in a sex- and depot- specific manner in white adipose tissue of adult rat offspring. Eur J Nutr. 2020, 10.1007/s00394-020-02318-w.doi:.Google Scholar
Moussa-Tooks, AB, Larson, ER, Gimeno, AF, et al. Long-term aberrations to cerebellar endocannabinoids induced by early-life stress. Sci Rep. 2020; 10(1), 7236. DOI 10.1038/s41598-020-64075-4.CrossRefGoogle ScholarPubMed
Carrillo, B, Collado, P, Diaz, F, Chowen, JA, Perez-Izquierdo, MA, Pinos, H. Physiological and brain alterations produced by high-fat diet in male and female rats can be modulated by increased levels of estradiol during critical periods of development. Nutr Neurosci. 2019; 22(1), 2939. DOI 10.1080/1028415X.2017.1349574.CrossRefGoogle ScholarPubMed
Soares, PN, Miranda, RA, Peixoto, TC, et al. Cigarette smoke during lactation in rat female progeny: late effects on endocannabinoid and dopaminergic systems. Life Sci. 2019; 232, 116575. DOI 10.1016/j.lfs.2019.116575.CrossRefGoogle ScholarPubMed