Published online by Cambridge University Press: 19 December 2011
Stimulating the maternal immune system before or during pregnancy can dramatically improve morphologic outcome in mice that have been exposed to teratogens. For example, maternal immune stimulation in mice reduced craniofacial and palate defects, heart defects, digit and limb defects, tail malformations and neural tube defects caused by diverse teratogens that included chemical agents, hyperthermia, X-rays and diabetes mellitus. Several different procedures of immune stimulation were effective and included footpad injection with Freund's Complete Adjuvant, intraperitoneal (IP) injection with inert particles or attenuated Bacillus Calmette–Guerin, intrauterine injection with allogenic or xenogenic lymphocytes, or intravascular, intrauterine or IP injection with immunomodulatory cytokines. Limited information is available regarding mechanisms by which such immune stimulation reduces fetal dysmorphogenesis; however, cytokines of maternal origin have been suggested as effector molecules that act on the placenta or fetus to improve development. These collective data raise novel questions about the possibility of unrecognized maternal immune system regulatory activity in normal fetal development. This manuscript reviews the literature showing maternal immune protection against morphologic birth defects. Potential operating mechanisms are discussed, and the possibility is considered that a suppressed maternal immune system may negatively impact fetal development.