Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T03:37:28.421Z Has data issue: false hasContentIssue false

Viscosity changes in concentrated skim-milk treated with alkali, urea and calcium-complexing agents: I. The importance of the casein micelle

Published online by Cambridge University Press:  01 June 2009

R. Beeby
Affiliation:
The Dairy Research Section, C.S.I.R.O., Melbourne, Australia
K. Kumetat
Affiliation:
The Dairy Research Section, C.S.I.R.O., Melbourne, Australia

Extract

The viscosity of concentrated skim-milk changed markedly with time upon the addition of urea, calcium-complexing agents or alkali, the viscosity-time curve passing through a distinct maximum. Also, the characteristic opacity of the milk disappeared in the presence of these reagents.

These phenomena are explained in terms of a postulated expansion of the casein micelles followed by their disintegration into ‘molecular’ units.

Electrostatic repulsions within the casein micelles are considered to be the cause of expansion.

Calcium, either in the ionic atmosphere of the casein micelle or as calcium bridges within the micelle, and hydrogen bonds are regarded as two of the major factors responsible for maintaining the stable structure of the casein micelle.

The authors wish to thank Mr E. F. Woods, Division of Protein Chemistry, C.S.I.R.O., Melbourne, and various staff members of the Dairy Research Section, C.S.I.R.O., Melbourne, for helpful discussion during the preparation of the manuscript. The technical assistance of Miss Audrey K. Morris is also gratefully acknowledged.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1959

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Beeby, R. & Mantle, J. (1955). Aust. J. Dairy Tech. 10, 110.Google Scholar
Bozler, E. (1958). Arch. Biochem. & Biophys. 73, 144.CrossRefGoogle Scholar
Burton, H. (1956). J. Dairy Res. 23, 92.CrossRefGoogle Scholar
D'yachenko, P. F. & Vlodavets, I. N. (1954). Kolloid Zh. 16, 94. Cited in Dairy Sci. Abstr. (1954). 16, 671.Google Scholar
Ford, T. F., Choate, W. L. & Heckman, F. A. (1956). Proc. XIVth Int. Dairy Congr. 1 (2), 73.Google Scholar
Grindrod, P. E., Price, W. V. & Sommer, H. H. (1956). J. Dairy Sci. 39, 499.CrossRefGoogle Scholar
Higgins, H. G. & Plomley, K. F. (1950). Aust. J. appl. Sci. 1 1.Google Scholar
Hippel, P. H. Von & Waugh, D. R. (1955). J. Amer. Chem. Soc. 77, 4311.CrossRefGoogle Scholar
Hostettler, H. & Imhof, K. (1952). Landw. Jb. Schweiz. 66, 308.Google Scholar
Kumetat, K. & Beeby, R. (1954). Dairy Ind. 19, 730.Google Scholar
Kumetat, K. & Beeby, R. (1956). Dairy Ind. 21, 287.Google Scholar
Kumetat, K. & Beeby, R. (1958). Dairy Ind. 23, 481.Google Scholar
Narayanamurti, D. & Handa, B. K. (1954). Kolloidzschr. 135, 140.Google Scholar
Nitschmann, H. (1949). Helv. Chim. Acta, 32, 1258.CrossRefGoogle Scholar
Plomley, K. F. & Higgins, H. G. (1954). Aust. J. appl. Sci. 5, 233.Google Scholar