Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T02:54:30.983Z Has data issue: false hasContentIssue false

Variation with season and lactation of plasmin and plasminogen concentrations in Montbeliard cows' milk

Published online by Cambridge University Press:  01 June 2009

Saloua Benslimane
Affiliation:
Laboratoire de Biochimie et Biologie Moléculaire, URA CNRS 531, University of Franche-Comté, Route de Gray, 25030 Besançon Cedex, France
Mai J. Dognin-Bergeret
Affiliation:
Laboratoire de Biochimie et Biologie Moléculaire, URA CNRS 531, University of Franche-Comté, Route de Gray, 25030 Besançon Cedex, France
Jean-Louis Berdague
Affiliation:
INRA, Station Expérimentale Laitière, 39800 Poligny, France
Yves Gaudemer
Affiliation:
Laboratoire de Biochimie et Biologie Moléculaire, URA CNRS 531, University of Franche-Comté, Route de Gray, 25030 Besançon Cedex, France

Summary

Plasmin and plasminogen were determined monthly over a one year period in samples of bulk and herd milks from Montbeliard cows. Montbeliard milk showed a high content of plasmin and plasminogen in comparison with milk from other breeds. In bulk milk, the plasmin activity reached a minimum in September (O·15 μg/ml milk) and a maximum in June (0·32 μg/ml milk). The annual mean concentration was 0·23 μg/ml milk. The plasminogen content varied around a value of 1·28 μg/ml milk, with a marked decrease in September (0·83 μg/ml milk) and a maximum in October (1·59 μg/ml milk). In herd milk, the minimum plasmin activity occurred in October (0·17 μ/ml milk) and the maximum in spring (O·42 μg/ml milk in May) with an annual mean of 0·30 μg/ml milk. The plasminogen content varied in a similar way, from 0·87 μg/ml milk to 1·82 μg/ml milk, with an annual mean of 1·46 μg/ml. The ratio plasminogen: plasmin ranged from 1·4 to 9·2 with an average of 4·9. From early to late lactation, plasmin and plasminogen concentrations increased from 0·25 to 0·38 μg/ml milk and from 1·07 to 2·01 μg/ml milk respectively and the plasminogen: plasmin ratio increased from 4·5 to 5·3. Studies of milk from cows at similar stage of lactation within a single herd have shown the necessity for distinguishing between two phases in the early stage of lactation. The first, a very early period, is usually present up to one month and the second occurs in the second and third months. Milk samples with the highest proportion of γ-caseins were not those with the greatest plasmin content but were those with high plasminogen contents, which had increased suddenly from the levels of the preceding month. This suggests a role for the plasminogen activator and inhibitor system.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aaltonen, M. L., Lehtonen, M., Lehdonkivi, T. & Antila, V. 1988 Plasmin activity in milk. Milchwissenschaft 43 573576Google Scholar
Alichanidis, E., Wrathall, J. H. M. & Andrews, A. T. 1986 Heat stability of plasmin (milk proteinase) and plasminogen. Journal of Dairy Research 53 259269CrossRefGoogle ScholarPubMed
Andrews, A. T. 1983 Proteinases in normal bovine milk and their action on caseins. Journal of Dairy Research 50 4555CrossRefGoogle ScholarPubMed
Andrews, A. T. & Alichanidis, E. 1983 Proteolysis of caseins and the proteose-peptone fraction of bovine milk. Journal of Dairy Research 50 275290CrossRefGoogle ScholarPubMed
Barry, J. G. & Donnelly, W. J. 1980 Casein compositional studies. I. The composition of casein from Friesian herd milks. Journal of Dairy Research 47 7181CrossRefGoogle Scholar
Barry, J. G. & Donnelly, W. J. 1981 Casein compositional studies. II. The effect of secretory disturbance on casein composition in freshly drawn and aged bovine milks. Journal of Dairy Research 48 437446CrossRefGoogle Scholar
Chen, J. H. & Ledford, R. A. 1971 Purification and characterization of milk protease. Journal of Dairy Science 54, 763Google Scholar
Coleman, P. L., Latham, H. G. & Shaw, E. N. 1976 Some sensitive methods for the assay of trypsinlike enzymes. Methods in Enzymology 45 1226CrossRefGoogle ScholarPubMed
Collen, D. 1980 On the regulation and control of fibrinolysis. Thrombosis & Haemostasis 43 7789Google ScholarPubMed
Creamer, L. K. 1975 β-Casein degradation in Gouda and Cheddar cheese. Journal of Dairy Science 58 287292CrossRefGoogle Scholar
Davies, D. T. & Law, A. J. R. 1977 The composition of whole casein from the milk of Ayrshire cows. Journal of Dairy Research 44 447454CrossRefGoogle Scholar
De Rham, O. & Andrews, A. T. 1982 The roles of native milk proteinase and its zymogen during proteolysis in normal bovine milk. Journal of Dairy Research 49 577585CrossRefGoogle ScholarPubMed
Donnelly, W. J. & Barry, J. G. 1983 Casein compositional studies. III. Changes in Irish milk for manufacturing and role of milk proteinase. Journal of Dairy Research 50 433441CrossRefGoogle Scholar
Driessen, F. M. & Van Der Waals, C. B. 1978 Inactivation of native milk proteinase by heat treatment. Netherlands Milk and Dairy Journal 32 245254Google Scholar
Dulley, J. R. 1972 Bovine milk protease. Journal of Dairy Research 39 19CrossRefGoogle ScholarPubMed
Eigel, W. N., Hofmann, C. J., Chibber, B. A. K., Tomich, J. M., Keenan, T. W. & Mertz, E. T. 1979 Plasmin-mediated proteolysis of casein in bovine milk. Proceedings of the National Academy of Sciences, USA 76 22442248CrossRefGoogle ScholarPubMed
Fox, P. F. 1981 Proteinases in dairy technology. Netherlands Milk and Dairy Journal 35 233253Google Scholar
Grappin, R. & Jeunet, R. 1974 [First tests of the Fossomatic equipment for automatic counting of cells in milk.] Lait 54 627644CrossRefGoogle Scholar
Halpaap, I., Reimerdes, E. H. & Klostermeyer, H. 1977 [Milk proteinases. VI. Comparative isolation of plasminogen from bovine blood and a proteinase from cow's milk.] Milchwissenschaft 32 341346Google Scholar
Hofmann, C. J., Keenan, T. W. & Eigel, W. N. 1979 Association of plasminogen with bovine milk fat globule membrane. International Journal of Biochemistry 10 909917CrossRefGoogle ScholarPubMed
Honkanen-Buzalski, T. & Sandholm, M. 1981 Trypsin-inhibitors in mastitic milk and colostrum: correlation between trypsin-inhibitor capacity, bovine serum albumin and somatic cell contents. Journal of Dairy Research 48 213223CrossRefGoogle ScholarPubMed
Humbert, G. & Alais, C. 1979 Review of the progress of Dairy Science: The milk proteinase system. Journal of Dairy Research 46 559571CrossRefGoogle ScholarPubMed
Kaminogawa, S., Mizobuchi, H. & Yamauchi, K. 1972 Comparison of bovine milk protease with plasmin. Agricultural and Biological Chemistry 36 21632167CrossRefGoogle Scholar
Kiermeier, F. & Semper, G. 1960 [Incidence of a proteolytic enzyme and a trypsin-inhibitor in cows' milk. I. Proteolytic activity.] Zeitschrift für Lebensmittel-Untersuchung und -Forschung 111 282307CrossRefGoogle Scholar
Korycka-Dahl, M., Ribadeau, Dumas B., Chene, N. & Martal, J. 1983 Plasmin activity in milk. Journal of Dairy Science 66 704711CrossRefGoogle Scholar
Kristensen, P., Larsson, L.-I., Nielsen, L. S., Grøndahl-Hansen, J., Andreasen, P. A. & Danø, K. 1984 Human endothelial cells contain one type of plasminogen activator. FEBS Letters 168 3337CrossRefGoogle ScholarPubMed
Larsson, L.-I., Skriver, L., Nielsen, L. S., Grøndahl-Hansen, J., Kristensen, P. & Danø, K. 1984 Distribution of urokinase-type plasminogen activator immunoreactivity in the mouse. Journal of Cell Biology 98 894903CrossRefGoogle ScholarPubMed
Noomen, A. 1975 Proteolytic activity of milk protease in raw and pasteurized cow's milk. Netherlands Milk and Dairy Journal 29 153161Google Scholar
Okamoto, U., Horie, N., Nagamatsu, Y. & Yamamoto, J.-I. 1981 Plasminogen-activator in human early milk: its partial purification and characterization. Thrombosis & Haemostasia 45 121126Google ScholarPubMed
Ossowski, L., Biegel, D. & Reich, E. 1979 Mammary plasminogen activator: correlation with involution, hormonal modulation and comparison between normal and neoplastic tissue. Cell 16 929940CrossRefGoogle ScholarPubMed
Pearce, K. N. 1977 The complexometric determination of calcium in dairy products. New Zealand Journal of Dairy Science and Technology 12 113115Google Scholar
Reimerdes, E. H. 1983 New aspects of naturally occurring proteases in bovine milk. Journal of Dairy Science 66 15911600CrossRefGoogle ScholarPubMed
Reimerdes, E. H., Halpaap, I. & Klostermeyer, H. 1981 [Milk proteinases. X. Enzyme-kinetic comparison of bovine plasmin with two milk proteinases] Milchwissenschaft 36 7379Google Scholar
Reimerdes, E. H., Petersen, F. & Kielwein, G. 1979 [Milk proteinases. IX. Proteolytic activity profiles of casein micelles, milk serum, blood serum and Pseudomonas fluorescens.] Milchwissenschaft 34 548551Google Scholar
Richardson, B. C. 1983 a The proteinases of bovine milk and the effect of pasteurization on their activity. New Zealand Journal of Dairy Science and Technology 18 233245Google Scholar
Richardson, B. C. 1983 b Variation of the concentration of plasmin and plasminogen in bovine milk with lactation. New Zealand Journal of Dairy Science and Technology 18 247252Google Scholar
Richardson, B. C. & Pearce, K. N. 1981 The determination of plasmin in dairy products. New Zealand Journal of Dairy Science and Technology 16 209220Google Scholar
Rollema, H. S., Visser, S. & Poll, J. K. 1983 Spectrophotometric assay of plasmin and plasminogen in bovine milk. Milchwissenschaft 38 214217Google Scholar
Schaar, J. 1985 Plasmin activity and proteose-peptone content of individual milks. Journal of Dairy Research 52 369378CrossRefGoogle Scholar
Schaar, J. & Funke, H. 1986 Effect of subclinical mastitis on milk plasminogen and plasmin compared with that on sodium, antitrypsin and N-acetyl-β-D-glucosaminidase. Journal of Dairy Research 53 515528CrossRefGoogle ScholarPubMed
Schaller, J., Moser, P. W., Dannegger-Müller, G. A. K., Rösselet, S. J., Kämpfer, U. & Rickli, E. E. 1985 Complete amino acid sequence of bovine plasminogen—comparison with human plasminogen. European Journal of Biochemistry 149 267278CrossRefGoogle ScholarPubMed
Skudder, P. J. 1981 Effects of adding potassium iodate to milk before UHT treatment. II. Iodate-induced proteolysis during subsequent aseptic storage. Journal of Dairy Research 48 115122CrossRefGoogle ScholarPubMed
Snoeren, T. H. M. & Van Riel, J. A. M. 1979 Milk proteinase, its isolation and action on αs2- and β-casein. Milchwissenschaft 34 528531Google Scholar
Trieu-Cuot, P. & Gripon, J. C. 1983 [Electrophoretic study of proteolysis during ripening of Bleu d'Auvergne cheese.] Lait 63 116128CrossRefGoogle Scholar
Uriel, J. 1966 [Electrophoresis in acrylamide-agarose gels.] Bulletin de la Société de Chimie Biologique 48 969982Google ScholarPubMed
Visser, F. M. W. 1977 Contribution of enzymes from rennet, starter bacteria and milk to proteolysis and flavour development in Gouda cheese. 2. Development of bitterness and cheese flavour. Netherland Milk and Dairy Journal 31 188209Google Scholar
Visser, S. 1981 Proteolytic enzymes and their action on milk proteins. A review. Netherlands Milk and Dairy Journal 35 6588Google Scholar