Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-30T23:02:35.907Z Has data issue: false hasContentIssue false

Structure of the casein micelle. A proposed model

Published online by Cambridge University Press:  01 June 2009

J. Garnier
Affiliation:
Laboratoire de Recherches sur les Protéines, Département de Technologie animale, I. N. R. A., 78, Jouy-en-Josas, France
B. Ribadeau Dumas
Affiliation:
Laboratoire de Recherches sur les Protéines, Département de Technologie animale, I. N. R. A., 78, Jouy-en-Josas, France

Summary

On the basis of complete permeability by high molecular weight reagents of casein micelles in milk and a uniform distribution of the 3 different casein subunits, a model of the micelle structure is proposed. It is composed of an average repeating unit of 1 κ-, 2 αs1;- and β-casein subunits assembled in a 3-dimensional network or branched polymer made of 130–130000 monomers, in which the trimers of κ-casein occupy the nodes and the copolymers of αs1;- and β-caseins make up the branches. All the associations between subunits are through non-covalent bonds. The chemical composition varies with the number of αs1;- and β;-casein subunits in the branches. This proposed structure is strongly supported by evidence from electron microscopy and a scale model has been made. It leads to an understanding of the role of κ-casein in micelle formation and opens new perspectives in explaining some properties of the caseins. It offers an interesting example of a new type of quaternary structure of protein subunits.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1970

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bohren, H. U. & Wenner, V. R. (1962). 1st Int. Congr. Fd Sci. Technol., London 1, 97.Google Scholar
Bousquet, M., Fléchon, J. E. & Denamur, R. (1969). Z. Zellforsch. mikrosk. Anal. 96, 418.CrossRefGoogle Scholar
Calapaj, G. G. (1968). J. Dairy Res. 35, 1.CrossRefGoogle Scholar
Choate, W. L., Heckman, F. A. & Ford, T. F. (1959). J. Dairy Sci. 42, 761.CrossRefGoogle Scholar
Garnier, J. (1963). Annls Biol. anim. Biochim. Biophys. 3, 71.CrossRefGoogle Scholar
Garnier, J. (1966). J. molec. Biol. 19, 586.CrossRefGoogle Scholar
Garnier, J. (1967). Biopolymers 5, 473.CrossRefGoogle Scholar
Garnier, J., Mocquot, G., Ribadeau Dumas, B. & Maubois, J.-L. (1968). Annls Nutr. Aliment. 22, B495.Google Scholar
Garnier, J. & Ribadeau Dumas, B. (1969). C.r. hebd. Séanc. Acad. Sci., Paris 268D, 2749.Google Scholar
Garnier, J., Yon, J. & Mocquot, G. (1964). Biochim. biophys. Acta 82, 481.CrossRefGoogle Scholar
Helminen, H. J. & Ericsson, J. L. E. (1968). J. Ultrastruct. Res. 25, 193.CrossRefGoogle Scholar
Hostettler, H. & Imhof, K. (1951). Milchwissenschaft 6, 351, 400.Google Scholar
Mercier, J.-C. & Garnier, J. (1969). Annls Biol. anim. Biochim. Biophys. 9, 427.CrossRefGoogle Scholar
Mocquot, G. & Garnier, J. (1965). J. agric. Fd Chem. 13, 414.CrossRefGoogle Scholar
Nitschmann, Hs. (1949). Helv. chim. Acta 32, 1258.CrossRefGoogle Scholar
Payens, T. A. J. (1968). Biochem. J. 108, 14 P.Google Scholar
Payens, T. A. J. & Schmidt, D. G. (1966). Archs Biochem. Biophys. 115, 136.CrossRefGoogle Scholar
Payens, T. A. J. & van Markwijk, B. W. (1963). Biochim. biophys. Acta 71, 517.CrossRefGoogle Scholar
Ribadeau Dumas, B. & Garnier, J. (1970). J. Dairy Res. 37, 269.CrossRefGoogle Scholar
Rose, D. (1968). J. Dairy Sci. 51, 1897.CrossRefGoogle Scholar
Rose, D. (1969). Dairy Sci. Abstr. 31, 171.Google Scholar
Rose, D. & Colvin, J. R. (1966). J. Dairy Sci. 49, 351.CrossRefGoogle Scholar
Sawyer, W. H., Coulter, S. T. & Jenness, R. (1963). J. Dairy Sci. 46, 564.CrossRefGoogle Scholar
Shimmin, P. D. & Hill, R. D. (1964). J. Dairy Res. 31, 121.CrossRefGoogle Scholar
Shimmin, P. D. & Hill, R. D. (1965). Aust. J. Dairy Technol. 20, 119.Google Scholar
Sullivan, R. A., Fitzpatrick, M. M., Stanton, E. K., Annino, R., Kissel, G. & Palermiti, F. (1955). Archs Biochem. Biophys. 55, 455.CrossRefGoogle Scholar
Swaisgood, H. E., Brunner, J. R. & Lillevik, H. A. (1964). Biochemistry, Easton 3, 1616.CrossRefGoogle Scholar
Waugh, D. F. & Noble, R. W. Jr (1965). J. Am. chem. Soc. 87, 2246.CrossRefGoogle Scholar
Wellings, S. R. & DeOme, K. B. (1961). J. biophys. biochem. Cytol. 9, 479.CrossRefGoogle Scholar
Zittle, C. A., Thompson, M. P., Custer, J. H. & Cerbulis, J. (1962). J. Dairy Sci. 45, 807.CrossRefGoogle Scholar