Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T01:36:07.425Z Has data issue: false hasContentIssue false

Some effects of ionizing radiations on the alkaline phosphatase in cow's milk

Published online by Cambridge University Press:  01 June 2009

G. Glew
Affiliation:
Wantage Research Laboratory (A.E.R.E.), Wantage, Berks

Summary

The effects of ionizing radiation on the alkaline phosphatase activity of milk have been studied under different environmental conditions. Twenty-five megarads were required to inactivate the enzyme completely. A combination of heat treatment and irradiation given either before or after heating showed that inactivation of the enzyme was greater when heating occurred after irradiation, this effect of the different forms of energy possibly indicating different mechanisms of heat inactivation. Varying the dose rate over the range 12–250 krad/min did not affect the amount of enzyme inactivated. After irradiation, activity declined during storage at 30°C but not at 5°C. Irradiation did not change the value of Km yet the Vmax fell, indicating that there are fewer active sites present after irradiation but that affinity of the remaining sites for the substrate remains unchanged.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1962

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderson, R. S. (1954). Radiat. Res. 1, 125.Google Scholar
Baker, R. W. & Goldblith, S. A. (1961). J. Fd Sci. 26, 91.CrossRefGoogle Scholar
Bier, M. & Nord, F. F. (1951). Arch. Biochem. Biophys. 31, 335.Google Scholar
Brownell, L. E. (1952). COO 91 Progress Report no. 3.Google Scholar
Dale, W. M. (1940). Biochem. J. 34, 1367.CrossRefGoogle Scholar
Folin, O. & Ciocalteu, V. (1927). J. biol. Chem. 73, 627.Google Scholar
Fram, H. (1957). J. Dairy Sci. 40, 19.Google Scholar
Glew, G. (1959). Biochem. J. 71, 29P.Google Scholar
Glew, G. & Cooper, B. E. (1960). Atomic Energy Research Establishment (Harwell), Report 3363.Google Scholar
Green, D. E. (1955). Quartermaster Food and Container Institute for the Armed Forces, Chicago, P.B.121306.Google Scholar
Haab, W. & Smith, L. M. (1957). J. Dairy Sci. 40, 546.Google Scholar
Hoff, J. E., Wertheim, J. H., Roychoudhury, R. N., Deolalker, S. T., Proctor, B. E. & Goldblith, S.A. (1958). Food Tech., Champaign, 12, 648.Google Scholar
Kay, H. D. & Graham, W. R. (1934). J. Dairy Res. 5, 63.Google Scholar
King, E. J. & Wooton, I. D. F. (1956). Microanalysis in Medical Biochemistry, 3rd ed. London: J. and A. Churchill.Google Scholar
Kung, H. G., Gaden, E. L. & King, C. G. (1953). J. agric. Fd Chem. 1, 142.Google Scholar
Lea, D. E. (1955). Actions of Radiations on Living Cells, 2nd ed. Cambridge University Press.Google Scholar
Lineweaver, H. & Burke, D. (1934). J. Amer. chem. Soc. 56 (i), 658.Google Scholar
Loken, M. K. (1957). Radiat. Res. 7, 328.Google Scholar
Loken, M. K., Mosser, D. G., Vermund, H. & Marvin, J. F. (1957). Univ. Minnesota med. Bull. 28, 15 07.Google Scholar
Marples, A. (1959). Biochem. J. 71, 28P.Google Scholar
Marples, A. & Glew, G. (1958). Atomic Energy Research Establishment (Harwell), Report 2726.Google Scholar
McDonald, M. R. (1953). Trans. Faraday Soc. 49, 333.Google Scholar
McDonald, M. R. (1954). Brit. J. Radiol. 27, 62.Google Scholar
Mee, L. K. (1958). Radiat. Res. 9, 151.Google Scholar
Rothstein, K. (1927). Amer. J. Roentgenol. 18, 528.Google Scholar
Schweigert, B. S. (1959), J. appl. Radiat. Isotopes, 6, 76.Google Scholar
Weiss, J. (1952). Nucleonics, 10, 7.Google Scholar
Wright, R. L. & Tramer, J. (1953 a). J. Dairy Res. 20, 177.Google Scholar
Wright, R. L. & Tramer, J. (1953 b). J. Dairy Res. 20, 258.Google Scholar
Wright, R. L. & Tramer, J. (1954). J. Dairy Res. 21, 37.Google Scholar
Wright, R. L. & Tramer, J. (1956). J. Dairy Res. 23, 248.Google Scholar