Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-26T01:25:05.728Z Has data issue: false hasContentIssue false

Purification and properties of an extracellular proteolytic enzyme from Bacillus cereus

Published online by Cambridge University Press:  01 June 2009

M. A. Islam
Affiliation:
Food Science Laboratories, Department of Applied Biochemistry and Nutrition, University of Nottingham, Sutton Bonington, Loughborough LE12 5RD
J. M. V. Blanshard
Affiliation:
Food Science Laboratories, Department of Applied Biochemistry and Nutrition, University of Nottingham, Sutton Bonington, Loughborough LE12 5RD

Summary

A milk-clotting proteolytic enzyme was isolated and purified from the culture filtrate of Bacillus cereus strain x29 by fractionation with acetone or ammonium sulphate and subsequent column chromatography employing DEAE cellulose and DEAE Sephadex. The purified enzyme was found to be homogeneous by acrylamide gel electrophoresis from pH 3·5 to 8·6, with, a molecular weight of about 50000. The single absorption maximum of the native enzyme was at 277 nm and the value of at 280 nm was 7·79. Purification resulted in a 9-fold enhancement of activity with 24 % yield. The optimum activity of the enzyme was at pH 8·0 at 40 °C with casein as the substrate. The enzyme was found to be most stable at pH 6·0 and was stable to freezing and freeze-drying. Heavy metal ions were found to inactivate the enzyme, but no metal ion activation was found. Enzyme activity was inhibited irreversibly by EDTA and reversibly by 1,10-phenanthroline. The enzyme has been identified as a Zn-containing neutral protease.

Type
Research Article
Copyright
Copyright © Proprietors of Journal of Dairy Research 1973

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andrews, P. (1964). Biochemical Journal 91, 222.CrossRefGoogle Scholar
Arima, K., Iwasaki, S. & Tamura, G. (1967). Agricultural and Biological Chemistry 31, 540.Google Scholar
Babbar, I. J., Srinivasan, R. A., Chakravorty, S. C. & Dudani, A. T. (1965). Indian Journal of Dairy Science 18, 89.Google Scholar
Beeby, R. & Nitschmann, Hs. (1963). Journal of Dairy Research 30, 7.CrossRefGoogle Scholar
Candy, M. R. & Nichols, A. A. (1956). Journal of Dairy Research 23, 329.CrossRefGoogle Scholar
Chakravorti, S. C., Srinivasan, R. A., Babbar, I. J., Dudani, A. T., Burde, S. D. & Iya, K. K. (1966). 17th International Dairy Congress, Munich D, 187.Google Scholar
Choudhery, A. K. & Mikolajcik, E. M. (1969). Journal of Dairy Science 52, 896.Google Scholar
Egdell, J. W. & Bird, E. R. (1950). Journal of the Society of Dairy Technology 3, 171.CrossRefGoogle Scholar
Feder, J. & Garrett, L. R. (1971). Biochemical and Biophysical Research Communications 43, 943.CrossRefGoogle Scholar
Feder, J., Keay, L., Garrett, L. R., Cirulis, N., Moseley, M. H. & Wildi, B. S. (1971). Biochimica et Biophysica Acta 251, 74.CrossRefGoogle Scholar
Fuwa, K., Pulido, P., McKay, R. & Vallee, B. L. (1964). Analytical Chemistry 36, 2407.CrossRefGoogle Scholar
Galesloot, Th. E. (1953). Netherlands Milk and Dairy Journal 7, 1.Google Scholar
Gollakota, K. G. & Halvorson, H. O. (1960). Journal of Bacteriology 79, 1.CrossRefGoogle Scholar
Grosskopf, J. C. & Harper, W. J. (1969). Journal of Dairy Science 52, 897.Google Scholar
Hanson, R. S., Srinivasan, V. R. & Halvorson, H. O. (1963). Journal of Bacteriology 85, 451.CrossRefGoogle Scholar
Iguch, N. & Yamamoto, K. (1955). Journal of the Agricultural Chemical Society, Japan 29, 387.Google Scholar
Keay, L. (1971). Process Biochemistry 6 (8), 17.Google Scholar
Kunitz, M. (1947). Journal of General Physiology 30, 291.CrossRefGoogle Scholar
Latt, S. A., Holmquist, B. & Vallee, B. L. (1969). Biochemical and Biophysical Research Communications 37, 333.CrossRefGoogle Scholar
Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. (1951). Journal of Biological Chemistry 193, 265.CrossRefGoogle Scholar
McConn, J. D., Tsuru, D. & Yasunobu, K. T. (1964). Journal of Biological Chemistry 239, 3706.CrossRefGoogle Scholar
Nakata, H. M. (1964). Journal of Bacteriology 88, 1522.CrossRefGoogle Scholar
Ridgway, J. D. (1955). Journal of Applied Bacteriology 18, 374.CrossRefGoogle Scholar
Roa, P. S. (1967). Thesis, Ohio State University.Google Scholar
Sakaguchi, K. & Yamada, K. (1944). Journal of the Agricultural Chemical Society, Japan 20, 65.Google Scholar
Srinivasan, R. A. (1961). Thesis, Bombay University.Google Scholar
Srinivasan, R. A., Anantharamaiah, S. N., Ananthakrishman, C. P. & Iya, K. K. (1962). 16th International Dairy Congress, Copenhagen B, 401.Google Scholar
Srinivasan, R. A., Anantharamaiah, S. N., Keshavamurthy, N., Ananthakrishnan, C. P. & Iya, K. K. (1962). 16th International Dairy Congress, Copenhagen B, 401.Google Scholar
Stone, M. J. & Rowlands, A. (1952). Journal of Dairy Research 19, 51.CrossRefGoogle Scholar
Tombs, M. P. & Akroyd, P. (1967). Shandon Instrument Appliances, Monograph No. 18.Google Scholar
Wieland, T., Griss, G., Haider, K. & Haccius, B. (1960). Archiv für Mikrobiologie 35, 415.CrossRefGoogle Scholar
Williams, D. J. (1956). Journal of Applied Bacteriology 19, 185.CrossRefGoogle Scholar