Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-11T22:19:47.814Z Has data issue: false hasContentIssue false

A pilot plant for the removal of cationic fission products from milk: II. Efficiency of the process and composition of the product

Published online by Cambridge University Press:  01 June 2009

R. F. Glascock
Affiliation:
National Institute for Research in Dairying, Shinfield, Reading
D. T. W. Bryant
Affiliation:
National Institute for Research in Dairying, Shinfield, Reading

Summary

AS previously described, the process consists essentially of the passage of milk at pH 5·2–5·25 through an ion exchange resin charged with a suitable mixture of the ions of Ca, K, Na and Mg.

When citric acid was used for reduction of the pH and 30 resin bed volumes (r.b.v.) were treated, the concentration of residual 85Sr was reduced to 2–4% whether it had been introduced in vivo or in vitro. There was no evidence that repeated use of the resin bed resulted in diminished radiochemical efficiency.

About the same efficiency of removal of 133Ba was obtained but this efficiency was achieved with 137Cs only if not more than 15 r.b.v. were treated. If 30 r.b.v. were treated the concentration of residual 137Cs was as much as 30%.

When hydrochloric acid was substituted for citric acid the residual concentration of 85Sr was 11%. Analyses of milks processed after adjustment of pH with either citric or hydrochloric acid showed the products to be satisfactory. The only important constituent lost was thiamine. Concentrations of heavy metals remained well below maximum values. Although the flavour of milk was detectably changed by the treatment it was still acceptable.

The results are discussed in relation to the problem of achieving maximum decontamination and to the design of a large scale plant.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1968

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Agricultural Research Council (1968). Rep. agric. Res. Coun. radiobiol. Lab. no. 18, 1967.Google Scholar
Barton-wright, E. C. (1946). Practical Methods for the Microbiological Assay of the Vitamin B-Complex and Amino Acids, rev. edn. London: Ashe Laboratories Ltd.Google Scholar
British Standards Institution (1955). B.S. 696.Google Scholar
British Standards Institution (1959). B.S. 3095.Google Scholar
British Standards Institution (1963). B.S. 1741.Google Scholar
Bryant, F. J., Chamberlain, A. C., Morgan, A. & Spicer, G. S. (1957). U.K. Atomic Energy Authority. A.E.R.E. HP/R2353.Google Scholar
Chapman, H. R., Ford, J. E., Kon, S. K., Thompson, S. Y., Rowlands, S. J., Crossley, E. L. & Rothwell, J. (1957). J. Dairy Res. 24, 191.Google Scholar
Deibel, R H., Evans, J. B. & Niven, C. F. Jr. (1957). J. Bact. 74, 818.CrossRefGoogle Scholar
Deman, J. M. (1964). J. Dairy Sci. 47, 546.Google Scholar
Easterly, D. G., Edmondson, L. F., Avants, J. K. & Sadler, A. M. (1964). J. Dairy Sci. 47, 549.Google Scholar
Edmondson, L. F. (1964). J. Dairy Sci. 47, 1201.Google Scholar
Edmondson, L. F., Keefer, D. H., Douglas, F. W. Jr., Harris, J. Y. & Dodson, E. (1963). J. Dairy Sci. 46, 1362.Google Scholar
Edmondson, L. F., Walter, H. E., Sadler, A. M., Hanrahan, F. P., Easterly, D. G., Harris, J. Y., Keefer, D. H. & Landgrebe, A. R. (1962). J. Dairy Sci. 45, 800.CrossRefGoogle Scholar
Fooks, J. H., Terrill, J. G. Jr., Heinemann, B. H., Baldi, E. J. & Walter, H. E. (1967). Hlth Phys. 13, 279.Google Scholar
Ford, J. E. (1967). J. Dairy Res. 34, 239.Google Scholar
Ford, J. E., Gregory, M. E., Porter, J. W. G. & Thompson, S. Y. (1953). 13th Int. Dairy Congr. The Hague 3, 1282.Google Scholar
Glascock, R. F. (1965). J. Soc. Dairy Technol. 18, 211.Google Scholar
Glascock, R. F. & Bryant, D. T. W. (1966). In Radioisotopes and Radiation in Dairy Science and Technology, pp. 8598. Vienna: International Atomic Energy Agency.Google Scholar
Glascock, R. F., Hall, H. S., Suffolk, S. F. & Bryant, D. T. W. (1968). J. Dairy Res. 35, 257.CrossRefGoogle Scholar
Gregory, M. E. (1954). Br. J. Nutr. 8, 340.Google Scholar
Gregory, M. E. (1959). J. Dairy Res. 26, 203.CrossRefGoogle Scholar
Heinemann, B., Baldi, E. J., Marshall, R. O., Sparling, E. M., Walter, H. E. & Fooks, J. H. (1967). J. Dairy Sci. 50, 426.CrossRefGoogle Scholar
Isaacks, R. E., Hazzard, D. G., Barth, J., Fooks, J. H. & Edmondson, L. F. (1967). J. Agric. Fd Chem. 15, 295.Google Scholar
Marier, J. R., & Boulet, M. (1958). J. Dairy Sci. 41, 1683.CrossRefGoogle Scholar
Monier-Williams, G. W. (1949). Trace Elements in Food. London: Chapman and Hall Ltd.CrossRefGoogle Scholar
Murthy, G. K., Campbell, J. E. Jr., Masurovsky, E. B. & Edmondson, L. F. (1962). U.S. Patent no. 3020161.Google Scholar
Murthy, G. K., Masurovsky, E. B., Campbell, J. E. Jr. & Edmondson, L. F. (1961) J. Dairy Sci. 44, 2158.Google Scholar
Ntailianas, H. A. & Whitney, R. McL. (1964). J. Dairy Sci. 47, 19.Google Scholar
Odagirt, S. & Nickerson, T. A. (1965). J. Dairy Sci. 48, 1157.CrossRefGoogle Scholar
Producers Creamery Company (1965). Strontium 90 removal project. Final Report, Springfield, Missouri: Producers Creamery Company.Google Scholar
Sadler, A. M., Walter, H. E., Hanrahan, F. P. & Edmondson, L. F. (1967). J. Dairy Sci. 50, 268.Google Scholar
Smith, R. H. & Mcallan, A. B. (1966). Br. J. Nutr. 20, 703.CrossRefGoogle Scholar
Thompson, S. Y., Henry, K. M. & Kon, S. K. (1964). J. Dairy Res. 31, 1.Google Scholar
Willis, J. B. (1960). Spectrochim. Acta 16, 273.CrossRefGoogle Scholar