Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-26T01:46:15.606Z Has data issue: false hasContentIssue false

Peptidase activities in Group N streptococci

Published online by Cambridge University Press:  01 June 2009

Lynette Mou
Affiliation:
Russell Grimwade School of Biochemistry, University of Melbourne, Parkville, Victoria 3052, Australia
J. J. Sullivan
Affiliation:
Dairy Research Laboratory, Division of Food Research, C.S.I.R.O., Highett, Victoria 3190, Australia
G. R. Jago
Affiliation:
Dairy Research Laboratory, Division of Food Research, C.S.I.R.O., Highett, Victoria 3190, Australia

Summary

Several peptidase activities in the 3 species of Group N streptococci were partly separated by gel filtration on Sephadex G-200. The peptidases identified were a general aminopeptidase of wide specificity, a tripeptidase, a proline iminopeptidase (prolyl-β-naphthylamidase), a proline iminodipeptidase and an aminopeptidase-P. The effects of temperature and pH on the stability of the enzyme activities, and the influence of the type of N source used in the growth medium on the elution pattern of the enzymes were examined.

Type
Research Article
Copyright
Copyright © Proprietors of Journal of Dairy Research 1975

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Davis, N. C. & Smith, E. L. (1953). Journal of Biological Chemistry 200, 373.CrossRefGoogle Scholar
Davis, N. C. & Smith, E. L. (1957). Journal of Biological Chemistry 224, 261.CrossRefGoogle Scholar
Exterkate, F. A. & Stadhouders, J. (1971). Netherlands Milk and Dairy Journal 25, 240.Google Scholar
French, C. S. & Milner, H. W. (1955). Methods in Enzymology 1, 64.CrossRefGoogle Scholar
Goldbarg, J. A. & Rutenburg, A. M. (1958). Cancer 11, 283.3.0.CO;2-8>CrossRefGoogle ScholarPubMed
Lee, H. J., LaRue, J. N. & Wilson, I. B. (1971). Analytical Biochemistry 41, 397.CrossRefGoogle Scholar
McKenzie, H. A. (1967). Advances in Protein Chemistry 22, 55.CrossRefGoogle Scholar
MacLeod, P. & Gordon, D. F. Jr (1961). Journal of Dairy Science 44, 237.CrossRefGoogle Scholar
Matheson, A. T. & Tattrie, B. L. (1964). Canadian Journal of Biochemistry 42, 95.CrossRefGoogle Scholar
Reiter, B. & Oram, J. D. (1962). Journal of Dairy Research 29, 63.Google Scholar
Sachs, D. H. & Painter, E. (1972). Science 175, 781.CrossRefGoogle Scholar
Sarid, S., Berger, A. & Katchalski, E. (1962). Journal of Biological Chemistry 237, 2207.CrossRefGoogle Scholar
Sørhaug, T. & Solberg, P. (1972). Journal of Dairy Science 55, 675.Google Scholar
Sullivan, J. J. & Jago, G. R. (1970). Australian Journal of Dairy Technology 25, 141.Google Scholar
Sullivan, J. J. & Jago, G. R. (1972). Australian Journal of Dairy Technology 27, 98.Google Scholar
Sullivan, J. J., Kieseker, F. G. & Jago, G. R. (1971). Australian Journal of Dairy Technology 26, 111.Google Scholar
Sullivan, J. J., Mou, L., Rood, J. I. & Jago, G. R. (1973). Australian Journal of Dairy Technology 28, 20.Google Scholar
Vanderheiden, G. J., Fairchild, A. C. & Jago, G. R. (1970). Applied Microbiology 19, 875.CrossRefGoogle Scholar
Van Der Zant, W. C. & Nelson, F. E. (1954). Journal of Dairy Science 37, 795.CrossRefGoogle Scholar
Yaron, A. & Mlynar, D. (1968). Biochemical and Biophysical Research Communications 32, 658.CrossRefGoogle Scholar