Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-26T01:31:53.407Z Has data issue: false hasContentIssue false

Oxidation of some milk lipid materials in model systems in presence of copper and ascorbic acid

Published online by Cambridge University Press:  01 June 2009

A. M. El-Negoumy
Affiliation:
Agricultural Products Utilization Laboratory, Biochemistry Section, Department of Animal and Range Sciences, Montana State University, Bozeman, U.S.A.
P. S. Ku
Affiliation:
Agricultural Products Utilization Laboratory, Biochemistry Section, Department of Animal and Range Sciences, Montana State University, Bozeman, U.S.A.

Summary

Some milk lipid materials representing the phospholipid protein complex—fat globule membrane from buttermilk (FGMI) and from butter serum (FGMII), intact fat globules (dialysed cream) and triglycerides (butter oil)—were subjected to copper-induced oxidation in systems containing distilled water, phosphate buffer of pH 6·60 or milk dialysate. These model systems usually contained 2% lipid material and were allowed to oxidize for 48 h at 3–5 °C. Oxidation intensity was measured by means of the 2-thiobarbituric acid test.

The oxidation intensity was dependent on the composition of the lipid material and of the aqueous phase. Ascorbic acid in absence of added copper catalysed the oxidation of the membrane materials and of globular fat. The oxidation intensity produced by FGMI (from buttermilk) differed significantly from that produced by FGMII (from butter serum) and the difference was well correlated with differences in their composition. Butter-oil preparations gave the lowest oxidation intensities, indicating that they are not the site for development of oxidative defects in aqueous media.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1968

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Brunner, J. R. & Thompson, M. P. (1961). J. Dairy Sci. 44, 1170.CrossRefGoogle Scholar
El-negoumy, A. M. (1965). J. Dairy Sci. 48, 1406.CrossRefGoogle Scholar
El-negoumy, A. M. (1966 a). Analyt. Biochem. 15, 437.CrossRefGoogle Scholar
El-negoumy, A. M. (1966 b). J. Chromat. 23, 325.CrossRefGoogle Scholar
El-negoumy, A. M., De puchal, M. S. & Hammond, E. G. (1962). J. Dairy Sci. 45, 311.CrossRefGoogle Scholar
El-negoumy, A. M., Miles, D. M. & Hammond, E. G. (1961). J. Dairy Sci. 44, 1047.CrossRefGoogle Scholar
El-rafey, M. S., Richardson, G. A. & Henderson, G. L. (1944). J. Dairy Sci. 27, 807.CrossRefGoogle Scholar
Filtman, R. & Frieden, E. (1957). J. Am. chem. Soc. 79, 5193.Google Scholar
Folch, J., Lees, M. & Sloane stanley, G. H. (1957). J. biol. Chem. 226, 497.CrossRefGoogle Scholar
Frieden, E. & Alles, J. (1958). J. biol. Chem. 230, 797.CrossRefGoogle Scholar
Greenbank, G. R. (1940). J. Dairy Sci. 23, 725.CrossRefGoogle Scholar
Holman, R. T. & Widmer, C. (1959). J. biol. Chem. 234, 2269.CrossRefGoogle Scholar
Jenness, R. & Patton, S. (1959). Principles of Dairy Chemistry, pp. 375–6. New York: John Wiley and Sons Inc.Google Scholar
Kelley, G. G. & Watts, B. M. (1957). Fd Res. 22, 308.CrossRefGoogle Scholar
King, E. J. (1932). Biochem. J. 26, 292.CrossRefGoogle Scholar
King, R. L. (1962). J. Dairy Sci. 45, 1165.CrossRefGoogle Scholar
King, R. L. (1963). J. Dairy Sci. 46, 267.CrossRefGoogle Scholar
King, R. L. & Dunkley, W. L. (1959). J. Dairy Sci. 42, 420.CrossRefGoogle Scholar
Moore, J. L., Richardson, T. & Amundson, C. H. (1964). J. Gas Chromat. 2, 318.CrossRefGoogle Scholar
Palmer, L. S. & Samuelsson, E. (1924). Proc. Soc. exp. Biol. Med. 21, 537.CrossRefGoogle Scholar
Radin, N. S., Hajra, A. K. & Akahori, Y. (1960). J. Lipid Res. 1, 250.CrossRefGoogle Scholar
Richardson, T. & Guss, P. L. (1965). J. Dairy Sci. 48, 523.CrossRefGoogle Scholar
Smith, L. M. & Lowry, R. R. (1962). J. Dairy Sci. 45, 581.CrossRefGoogle Scholar
Swanson, A. M. & Sommer, H. H. (1940). J. Dairy Sci. 23, 201.CrossRefGoogle Scholar