Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-12T02:43:42.727Z Has data issue: false hasContentIssue false

Optimizing clarified whey ultrafiltration: influence of pH

Published online by Cambridge University Press:  01 June 2009

Georges Daufin
Affiliation:
INRA, Laboratoire de Recherches de Technologic Laitière, 65 rue de Saint-Brieuc, 35042 Rennes Cédex, France
Jean-Pierre Labbe
Affiliation:
Ecole Nationale Supérieure de Chimie. 11 rue Pierre et Marie Curie, 75231 Paris Cédex 05, France
Auguste Quemerais
Affiliation:
Université Rennes I, Laboratoire de Spectroscopie, Avenue du Général Leclerc, Campus de Beaulieu, 35042 Rennes Cedex, France
Françoise Michel
Affiliation:
INRA, Laboratoire de Recherches de Technologic Laitière, 65 rue de Saint-Brieuc, 35042 Rennes Cédex, France
Uzi Merin
Affiliation:
Dairy Science Laboratory, Agricultural Organization, The Volcani Center, PO Box 6, Bet Dagan 50250, Israel

Summary

Whey clarification can be achieved by using a lipid aggregation step followed by microfiltration. The results from using an M5 Carbosep membrane to ultrafilter defatted sweet whey at pH values in the range 8·0–1·5 furnished understanding of the fouling process so that fouling may be minimized. The conventional method of aggregation, allowing the pH to decrease naturally, has been compared with a modified aggregation process in which the pH was maintained constant. These two methods differed significantly in their influence on the subsequent ultrafiltration (UF), with respect to the UF hydraulic characteristics, i.e. reversible, irreversible and overall fouling resistance. Optimal UF performance was obtained at a pH equal to or slightly higher than the aggregation pH (7·5) owing to the limited fouling contribution of proteins and calcium phosphates. The modified process permitted UF at fluxes in the range 50–115 1 h-1 m-2, with moderate transraembrane pressure, even with a protein content two to five times higher than that of regular whey.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Da Costa, A. R., Fane, A. G. & Wiley, D. E. 1993 Ultrafiltration of whey protein solutions in spacer-filled flat channels. Journal of Membrane Science 76 245254Google Scholar
Daufin, G., Labbé, J.-P., Quémerais, A. & Michel, F. 1991 Fouling of an inorganic membrane during ultrafiltration of defatted whey protein concentrates. Netherlands Milk and Dairy Journal 45 259272Google Scholar
Daufin, G., Michel, F., Labbé, J.-P., Quémerais, A. & Grangeon, A. 1993 a Ultrafiltration of defatted whey: improving performance by limiting membrane fouling. Journal of Dairy Research 60 7988Google Scholar
Daufin, G., Michel, F. & Merin, U. 1992 a Ultrafiltration of defatted whey protein concentrates (WPC) withdrawn from an industrial plant. Lait 72 185199Google Scholar
Daufin, G., Michel, F. & Merin, U. 1992 b Study of ultrafiltration of defatted whey: influence of some physicochemical characteristics. Australian Journal of Dairy Technology 47 713Google Scholar
Daufin, G., Radenac, J.-F., Gesan, G., Kerhervé, F.-L., Le Berre, O., Michel, F. & Merin, U. 1993 b A novel rig design for ultra- and microfiltration experiments. Separation Science and Technology 28 16351642Google Scholar
Dumon, S. 1992 [Protein Ultrafiltration with Inorganic Carbon-zirconia Membranes. Separation properties with physicochemical alteration of surface and solution.] PhD thesis, Université Aix-Marseille IIIGoogle Scholar
Dumon, S. & Barnier, H. 1992 Ultrafiltration of protein solutions on zireonia membranes. The influence of surface chemistry and solution chemistry on adsorption. Journal of Membrane Science 74 289302Google Scholar
Fane, A. C., Fell, C. J. D. & Suki, A. 1983 The effect of pH and ionic environment on the ultrafiltration of protein solutions with retentive membranes. Journal of Membrane Science 16 195210Google Scholar
Fauquant, J., Pierre, A. & Brulé, G. 1985 a [Clarifying acid casein whey.] Technique Laitière no. 1003 3741Google Scholar
Fauquant, J., Vieco, S., Brulé, G. & Maubois, J. L. 1985 b [Sweet whey clarification by heating in the presence of calcium to remove residual fat.] Lait 65 120Google Scholar
Gupta, V. K. & Reuter, H. 1987 Studies on ultrafiltration of cheese whey for the manufacture of whey protein concentrates. Kieler Milchwirtschaftliche Forschungsberichte 39 3950Google Scholar
Hanemaaijer, J. H., Robbertsen, T., Van Den Boomoaard, Th. & Gunnink, J. W. 1989 Fouling of ultrafiltration membranes. The role of protein adsorption and salt precipitation. Journal of Membrane Science 40 199217Google Scholar
Hill, A. R. 1988 Thermal precipitation of whey proteins, Milchwissenschaft 43 565567Google Scholar
Labbé, J.-P., Quémerais, A., Michel, F. & Daufin, G. 1990 Fouling of inorganic membranes during whey ultrafiltration: analytical methodology. Journal of Membrane Science 51 293307CrossRefGoogle Scholar
Matthews, M. E. 1979 Advances in whey processing. Ultrafiltration and reverse osmosis. New Zealand Journal of Dairy Science and Technology 14 8692Google Scholar
Maubois, J. L. 1988 Whey: its biotechnical signification. 8th International Biotechnology Symposium 2 814824 (Eds G. Durand, L. Robichon and J. Florent). Paris: Société Françaisc de MicrobiologieGoogle Scholar
Maubois, J. L., Pierre, A., Fauquant, J. & Piot, M. 1987 Industrial fractionation of main whey proteins, trends in whey utilization, international Dairy Federation Bulletin no. 212 154159Google Scholar
Morr, C. V. & Foegeding, E. A. 1990 Composition and functionality of commercial whey and milk protein concentrates and isolates: a status report. Food Technology 44 (4) 100112Google Scholar
Nyström, M. 1989 Fouling of unmodified and modified polysulfone ultrafiltration membranes by ovalbumin. Journal of Membrane Science 44 183196CrossRefGoogle Scholar
Robichaux, W. & Ellis, R. F. 1982 Ultrafiltration plant recovers 35% protein concentrate from whey, food Processing 43 102103Google Scholar
Suki, A., Fane, A. G. & Fell, C. J. D. 1984 Flux decline in protein ultrafiltration. Journal of Membrane Science 21 269283CrossRefGoogle Scholar
Swaisgood, H. E. 1982 Chemistry of milk protein. In Developments in Dairy Chemistry—1. Proteins, pp. 159 (Ed. Fox, P. F.). London: Applied Science PublishersGoogle Scholar
Techsep Co. 1992 [Wheys with high purity proteins (> 80%).] Technical Bulletin LLS9202 F Rev O+80%).]+Technical+Bulletin+LLS9202+F+Rev+O>Google Scholar
Waters, A. G. & Fane, A. G. 1981 Initial flux and rejection characteristics of partially permeable ultrafiltration membranes. Journal of Applied Polymer Science 26 30073014Google Scholar