Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-03T05:33:28.775Z Has data issue: false hasContentIssue false

Metabolism of cod-liver oil in relation to milk fat secretion

Published online by Cambridge University Press:  01 June 2009

P. E. Brumby
Affiliation:
National Institute for Research in Dairying, Shinfield, Reading, RG2 9AT
J. E. Storry
Affiliation:
National Institute for Research in Dairying, Shinfield, Reading, RG2 9AT
J. D. Sutton
Affiliation:
National Institute for Research in Dairying, Shinfield, Reading, RG2 9AT

Summary

The effects of daily supplements of 300 g native and 2 hydrogenated cod-liver oils (CLO) to the diets of lactating cows have been examined. Native CLO supplements increased the proportion of propionate and decreased the proportion of acetate in the rumen and also decreased the yields in milk of fatty acids synthesized within the mammary gland and those derived from plasma triglycerides. These effects were reduced or eliminated when the hydrogenated oils were given instead of the native CLO. With all 3 supplements about 15% of the dietary C20and C22 acids was secreted in milk.

Both native and hydrogenated CLO supplements increased the concentrations of the cholesteryl ester and phospholipid components of the α-lipoproteins in the blood plasma. These components contained most of the C20 and C22 acids of the CLO supplements that were incorporated into the blood plasma lipids. With the native CLO supplement about half of the C20 and C22 acids present in the blood plasma were polyunsaturated.

There were no differences in the effectiveness of high-density plasma lipoproteins as activators of triglyceride emulsions for lipoprotein lipase hydrolysis whether the lipoproteins were from cows receiving the native or the hydrogenated CLO supplements or the control diets. Significant rates of hydrolysis by lipoprotein lipase could not be demonstrated using as substrates low- or high-density plasma lipoproteins or activated emulsions of their extracted lipids.

Additional in vitro experiments using activated triglyceride emulsions as substrates for mammary lipoprotein lipase showed that replacement of a soybean oil emulsion by an emulsion of native CLO reduced the rate of hydrolysis considerably, whereas an emulsion of hydrogenated CLO was without effect unless it was present at levels in excess of 50%.

It is concluded that the change in rumen fermentation induced by the polyunsaturated fatty acids of CLO is implicated in the decreased intramammary synthesis of fatty acids, but that additional information is required before the reason for the reduced mammary uptake of plasma fatty acids can be established.

Type
Research Article
Copyright
Copyright © Proprietors of Journal of Dairy Research 1972

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Annison, E. F., Linzell, J. L., Fazakerley, S. & Nichols, B. W. (1967). Biochem. J. 102, 637.CrossRefGoogle Scholar
Beitz, D. C. & Davis, C. L. (1964). J. Dairy Sci. 47, 1213.Google Scholar
Bickerstaffe, R. (1971). Proc. Easter Sch. Agric. Sci. Univ. Nott. 1970, 17, 317.Google Scholar
Bishop, C., Davies, T., Glascock, R. F. & Welch, V. A. (1969). Biochem. J. 113, 629.CrossRefGoogle Scholar
Blanchette-Mackie, E. J. & Scow, R. O. (1971). J. cell. Biol. 51, 1.CrossRefGoogle Scholar
British Standards Institution (1969). British Standard no. 696, Part II, P. 7. London: British Standards Institution.Google Scholar
Brumby, P. E. & Welch, V. A. (1970). J. Dairy Res. 37, 121.Google Scholar
Carroll, K. K. (1961). Nature, Lond. 191, 377.CrossRefGoogle Scholar
Davis, C. L. & Brown, R. E. (1970). In Physiology of Digestion and Metabolism in the Ruminant: Proc. 3rd Int. Symp. 1969, p. 545. (Ed. Phillipson, A. T..) Newcastle upon Tyne: Oriel Press.Google Scholar
Dole, V. P. & Meinertz, H. (1960). J. biol. Chem. 235, 2595.Google Scholar
Fielding, C. J. (1970 a). Biochim. biophys. Acta 206, 109.Google Scholar
Fielding, C. J. (1970 b). Biochim. biophys. Acta 206, 118.CrossRefGoogle Scholar
Graham, W. R. & Cupps, P. T. (1938). J. Dairy Sci. 21, 45.Google Scholar
Hartmann, P. E. & Lascelles, A. K. (1964). Aust. J. biol. Sci. 17, 935.CrossRefGoogle Scholar
Havel, R. J., Shore, V. G., Shore, B. & Bier, D. M. (1970). Circ. Res. 27, 595.CrossRefGoogle Scholar
Hilditch, T. P. & Thompson, H. M. (1936). Biochem. J. 30, 677.CrossRefGoogle Scholar
Hofstetter, H. H., Sen, N. & Holman, R. T. (1965). J. Am. Oil Chem. Soc. 42, 537.Google Scholar
Korn, E. D. (1955). J. biol. Chem. 215, 15.Google Scholar
LaRosa, J. C., Levy, R. I., Herbert, P., Lux, S. E. & Fredrickson, D. S. (1970). Biochem. biophys. Res. Commun. 41, 57.CrossRefGoogle Scholar
Linzell, J. L. (1968). Proc. Nutr. Soc. 27, 44.CrossRefGoogle Scholar
McCay, C. M., Paul, H. & Maynard, L. A. (1938). J. Nutr. 15, 367.Google Scholar
Metcalfe, L. D. & Schmitz, A. A. (1961). Analyt. Chem. 33, 363.Google Scholar
Moore, J. H. & Steele, W. (1968). Proc. Nutr. Soc. 27, 66.Google Scholar
Nicholson, J. W. G., Cunningham, H. M. & Friend, D. W. (1963). Can. J. Anim. Sci. 43, 309.CrossRefGoogle Scholar
Nicholson, J. W. G. & Sutton, J. D. (1971). J. Dairy Res. 38, 363.CrossRefGoogle Scholar
Nottle, M. C. & Rook, J. A. F. (1963). Proc. Nutr. Soc. 22, vii.Google Scholar
Robinson, D. S. (1963). J. Lipid Res. 4, 21.CrossRefGoogle Scholar
Schoefl, G. I. & French, J. E. (1968). Proc. R. Soc. B 169, 153.Google Scholar
Shaw, J. C. & Ensor, W. L. (1959). J. Dairy Sci. 42, 1238.CrossRefGoogle Scholar
Singleton, W. S., Gray, M. S., Brown, M. L. & White, J. L. (1965). J. Am. Oil Chem. Soc. 42, 53.Google Scholar
Stewart, P. S. & Irvine, D. M. (1970). J. Dairy Sci. 53, 279.CrossRefGoogle Scholar
Storry, J. E. (1970). J. Dairy Res. 37, 139.CrossRefGoogle Scholar
Storry, J. E. & Brumby, P. E. (1970). 18th Int. Dairy Congr., Sydney 1 E, 602.Google Scholar
Storry, J. E., Hall, A. J. & Johnson, V. W. (1968). Br. J. Nutr. 22, 609.CrossRefGoogle Scholar
Storry, J. E., Hall, A. J., Tuckley, B. & Millard, D. (1969). Br. J. Nutr. 23, 173.Google Scholar
Storry, J. E. & Millard, D. (1965). J. Sci. Fd Agric. 16, 417.CrossRefGoogle Scholar
Storry, J. E. & Rook, J. A. F. (1964). Biochem. J. 91, 27c.CrossRefGoogle Scholar
Storry, J. E. & Rook, J. A. F. (1965). Biochem. J. 96, 210.CrossRefGoogle Scholar
Storry, J. E., Rook, J. A. F. & Hall, A. J. (1967). Br. J. Nutr. 21, 425.CrossRefGoogle Scholar
Storry, J. E. & Tuckley, B. (1967). Lipids 2, 501.Google Scholar
Storry, J. E., Tuckley, B. & Hall, A. J. (1969). Br. J. Nutr. 23, 157.Google Scholar
Sutton, J. D. & Johnson, V. W. (1969). J. agric Sci., Camb. 73, 459.CrossRefGoogle Scholar
Swett, W. W. & Matthews, C. A. (1949). Tech. Bull. U.S. Dep. Agric. no. 982.Google Scholar
Tanaka, K. (1970 a). Jap. J. zootech. Sci. 41, 254.Google Scholar
Tanaka, K. (1970 b). Jap. J. zootech. Sci. 41, 453.Google Scholar
Tove, S. B. & Mochrie, R. D. (1963). J. Dairy Sci. 46, 686.CrossRefGoogle Scholar
Varman, P. N. & Schultz, L. H. (1968). J. Dairy Sci. 51, 1597.Google Scholar
Varman, P. N., Schultz, L. H. & Nichols, R. E. (1968). J. Dairy Sci. 51, 1956.Google Scholar