Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-23T21:48:56.882Z Has data issue: false hasContentIssue false

Membrane material in bovine skim-milk from udder quarters infused with endotoxin and pathogenic organisms

Published online by Cambridge University Press:  01 June 2009

M. Anderson
Affiliation:
National Institute for Research in Dairying, Shinfield, Reading, RG2 9AT
B. E. Brooker
Affiliation:
National Institute for Research in Dairying, Shinfield, Reading, RG2 9AT
A. T. Andrews
Affiliation:
National Institute for Research in Dairying, Shinfield, Reading, RG2 9AT
E. Alichanidis
Affiliation:
National Institute for Research in Dairying, Shinfield, Reading, RG2 9AT

Summary

The effects of infusing endotoxin and a pathogen into different quarters of the udder of the same cow on the appearance and composition of milk membrane material were studied. Milk membrane was prepared by high-speed centrifugation of skim-milk. In samples from the control quarters only, a very thin layer covering the casein pellet was observed, whereas after the infusions it appeared as an opaque diffuse fluffy layer. The fluffy layer persisted for a maximum of 3 d after endotoxin infusion. A similar layer appeared 14 d after infusion of the pathogen and persisted, in spite of antibiotic treatment, throughout the experiment. From comparisons of (a) milk acid phosphatase activities between infused and control quarters, (b) the protein composition of milk membrane, and (c) morphological observations on the distribution of membrane material in milk, it was concluded that milk membrane originates from leucocytes, cell debris from the mammary gland, and the surface of the milk-fat globule membrane. The relative contribution made by these sources to milk membrane from healthy and infected udders is discussed.

Type
Research Article
Copyright
Copyright © Proprietors of Journal of Dairy Research 1975

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderson, M. & Brooker, B. E. (1974). Research in Veterinary Science 16, 397.CrossRefGoogle Scholar
Anderson, M. & Brooker, B. E. (1975). Journal of Dairy Science (in press).Google Scholar
Anderson, M., Brooker, B. E., Andrews, A. T. & Alichanidis, E. (1974 a). Journal of Dairy Science 57, 1448.CrossRefGoogle Scholar
Anderson, M., Cawston, T. & Cheeseman, G. C. (1974 b). Biochemical Journal 139, 653.CrossRefGoogle Scholar
Anderson, M. & Cheeseman, G. C. (1971). Journal of Dairy Research 38, 409.CrossRefGoogle Scholar
Andrews, A. T. & Alichanidis, E. (1975). Journal of Dairy Research 42, 391.CrossRefGoogle Scholar
Barrett, A. J. (1972). In Lysosomes. A Laboratory Handbook, p. 117. (Ed. Dingle, J. T..) Amsterdam: North-Holland Publ. Co.Google Scholar
Bauer, H. (1972). Journal of Dairy Science 55, 1375.CrossRefGoogle Scholar
Bingham, E. W., Jasewicz, L. & Zittle, C. A. (1961). Journal of Dairy Science 44, 1247.CrossRefGoogle Scholar
Bloom, W. & Fawcett, D. W. (1962). A textbook of histology (8th edn), p. 90. Philadelphia, Pa.: W. B. Saunders Co.Google Scholar
Bourgeois, E. (1927). Lait 7, 851.CrossRefGoogle Scholar
Carroll, R. J., Brower, D. P. & Thompson, M. P. (1972). Journal of Dairy Science 55, 661.Google Scholar
Chandler, R. L., Reid, I. M., Harrison, R. & France, B. R. (1974). Journal of Comparative Pathology 84, 517.CrossRefGoogle Scholar
Fernley, H. N. & Walker, P. G. (1969). Biochemical Journal 111, 187.CrossRefGoogle Scholar
Josephson, R. V., Thomas, E. L., Morr, C. V. & Coulter, S. T. (1967). Journal of Dairy Science 50, 1376.CrossRefGoogle Scholar
Kitchen, B. J. (1974). Biochimica et Biophysica Acta 356, 257.CrossRefGoogle Scholar
Morr, C. V. (1973). Journal of Dairy Science 56, 544.CrossRefGoogle Scholar
Morr, C. V. & Swenson, P. E. (1973). Journal of Dairy Science 56, 1389.CrossRefGoogle Scholar
Mulder, H. & Walstra, P. (1974). Technical Communication, Commonwealth Bureau of Dairy and Technology, No. 4, p. 67.Google Scholar
Newbould, F. H. S. & Neave, F. K. (1965). Journal of Dairy Research 32, 157.CrossRefGoogle Scholar
Patton, S. (1973). Journal of the American Oil Chemists' Society 50, 178.CrossRefGoogle Scholar
Peters, I. I. & Trout, G. M. (1945). Journal of Dairy Science 28, 277.CrossRefGoogle Scholar
Plantz, P. E. & Patton, S. (1973). Biochimica et Biophysica Acta 291, 51.CrossRefGoogle Scholar
Plantz, P. E., Patton, S. & Keenan, T. W. (1973). Journal of Dairy Science 56, 978.CrossRefGoogle Scholar
Schalm, O. W., Carroll, E. J. & Jain, N. C. (1971). Bovine Mastitis, p. 100. Philadelphia, Pa.: Lea & Fobigor.Google Scholar
Schalm, O. W., Lasmanis, J. & Carroll, E. J. (1964). American Journal of Veterinary Research 25, 75.Google Scholar
Stewart, P. S., Puppione, D. L. & Patton, S. (1972). Zeitschrift für Zellforschung und Mikroskopische Anatomie 123, 161.CrossRefGoogle Scholar
Wooding, F. B. P. (1971). Journal of Ultrastructure Research 37, 388.CrossRefGoogle Scholar
Wooding, F. B. P. (1972). Experientia 28, 1077.CrossRefGoogle Scholar
Wooding, F. B. P. (1974). Journal of Dairy Research 41, 331.CrossRefGoogle Scholar
Zittle, C. A., Dellamonica, E. S., Custer, J. H. & Rudd, R. K. (1956). Journal of Dairy Science 39, 528.CrossRefGoogle Scholar