Published online by Cambridge University Press: 01 June 2009
A method is described of measuring pressures in a teatcup assembly using strain gauge transducers and simultaneously following movement of the liner wall by means of a cine camera. In preliminary experiments with a narrow bore type liner it was found that pressures below the teat could vary during a single pulsation cycle from a few inches of mercury below atmospheric pressure (inHg vacuum) to as high as 25 inHg vacuum in the absence of an airbleed. Bleeding air into the barrel of the liner or into the clawpiece considerably reduced fluctuation in pressure, and the vacuum barely rose above the nominal milking vacuum of 15 inHg. Reducing the rate of change of pressure in the pulsation chamber did not greatly affect the maximum vacuum obtained. Opening and closing of the liner by pressure change in the pulsation chamber was under some conditions considerably delayed by the pressure conditions existing inside the liner.
It is suggested that inertia effects of milk in the cluster and the natural frequency of the system are largely responsible for the observed pressure changes under the teat.