Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T00:57:42.797Z Has data issue: false hasContentIssue false

Low resolution NMR spectroscopy: a tool to study protein denaturation: I. Application to diamagnetic whey proteins

Published online by Cambridge University Press:  01 June 2009

Pierre Lambelet
Affiliation:
Nestec Ltd, Nestlé Research Centre, Vers-chez-les-Blanc, CH-1000 Lausanne, 26, Switzerland
Rafael Berrocal
Affiliation:
Nestec Ltd, Nestlé Research Centre, Vers-chez-les-Blanc, CH-1000 Lausanne, 26, Switzerland
Francine Ducret
Affiliation:
Nestec Ltd, Nestlé Research Centre, Vers-chez-les-Blanc, CH-1000 Lausanne, 26, Switzerland

Summary

A method using low resolution NMR spectroscopy is described for investigating whey protein thermal denaturation. The method is based on measuring at 20 °C changes in water proton transverse (T2) relaxation parameter following the denaturing treatment. This parameter is shown to be sensitive to protein denaturation and not to other phenomena such as gelation. Examples are given for the qualitative study of protein thermal denaturation in whey protein concentratc, β-lactoglobulin, α-lactalbumin, bovine serum albumin and immunoglobulins aqueous solutions and for the quantitative determination of thermal denaturation in whey protein concentrate solutions.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

AOAC 1980 Official methods of analysis of the Association of Officiai Analytical Chemists, 13th edn, Methods 16.047, 16.048 and 47.021 (Ed. Horwitz, W.) Washington, DC: AOACGoogle Scholar
Blicharska, B. & Rydzy, M. 1979 Investigation of protein denaturation by nuclear magnetic relaxation method. Acta Physica Polonica A56 439443Google Scholar
Brandts, J. F. 1969 Conformational transitions of proteins in water and in aqueous mixtures. In Structure and Stability of Biological Macromolecules pp. 213290 (Eds Timasheff, S. N. and Fasman, G. D.) New York: Marcel DekkerGoogle Scholar
Chaplin, L. C. & Lyster, R. L. J. 1986 Irreversible heat denaturation of bovine α-lactalbumin. Journal of Dairy Research 53, 249258CrossRefGoogle Scholar
De Wit, J. N. 1981 Structure and functional behaviour of whey proteins. Netherlands Milk and Dairy Journal 35 4764Google Scholar
De Wit, J. N. & Klarenbeek, G. 1981 A differential scanning calorimetric study of the thermal behaviour of bovine βlactoglobulin at temperatures up to 160 °C. Journal of Dairy Research 48, 293302CrossRefGoogle Scholar
De Wit, J. N., Klarenbeek, G. & Hontelez-Backx, E. 1983 Evaluation of functional properties of whey protein concentrates and whey protein isolates. I. Isolation and characterization. Netherlands Milk and Dairy Journal 37 3749Google Scholar
De Wit, J. N. & Swinkels, G. A. M. 1980 A differential scanning calorimetric study of the thermal denaturation of bovine β-lactoglobulin. Thermal behaviour at temperatures up to 100 °C. Biochimica et Biophysica Acta 624 4050CrossRefGoogle Scholar
Donovan, J. W. & Ross, K. D. 1973 Increase in the stability of aviclin produced by binding of biotin. A differential scanning calorimetric study of denaturation by heat. Biochemistry 12 512517CrossRefGoogle ScholarPubMed
Dupont, M. 1965 [Comparison of the thermal denaturation of β-lactoglobulins A and B at pH 6·85.] Biochimica et Biophysica Acta 94 573575CrossRefGoogle Scholar
Goldsmith, S. M. & Toledo, R. T. 1985 Studies on egg albumen gelation using nuclear magnetic resonance. Journal of Food Science 50, 5962CrossRefGoogle Scholar
Gumpen, S., Hegg, P. O. & Martens, H. 1979 Thermal stability of fatty acid-serum albumin complexes studied by differential scanning calorimetry. Biochimica et Biophysica Acta 574 189196CrossRefGoogle ScholarPubMed
Itoh, T., Wada, Y. & Nakanishi, T. 1976 Differential thermal analysis of milk proteins. Agricultural and Biologiral Chemistry 40 10831086Google Scholar
Jost, R., Baechler, R. & Masson, G. 1986 Heat gelation of oil-in-water emulsions stabilized by whey protein. Journal of Food Science 51 440444, 449CrossRefGoogle Scholar
Kuntz, I. D. & Kauzmann, W. 1974 Hydration of proteins and polypeptides. Advances in Protein Chemistry 28, 239345CrossRefGoogle ScholarPubMed
Lambelet, P., Berrocal, R., Desarzens, G., Froehlicher, I. & Ducret, F. 1988 Pulsed low-resolution NMR investigations of protein sols and gels. Journal of Food Science 53 943946, 964CrossRefGoogle Scholar
Lelievre, J. & Creamer, L. K. 1978 An NMR study of the formation and syneresis of renneted milk gels. Milchwissenschaft 33 7376Google Scholar
Mahdi, A. I. 1980 Nuclear magnetic resonance in soya bean protein isolates, sols and gels. Ph.D Thesis. University of NottinghamGoogle Scholar
Maquet, J., Theveneau, H., Djabourov, M. & Papon, P. 1984 1H-NMR study of gelatin gels. International Journal of Biological Macromolecules 6 162163CrossRefGoogle Scholar
Meiller, F. & Mirabel, B. 1975 [Process for the separation of proteins by ion exchange.] French Patent Application 2, 321, 932Google Scholar
Mills, O. E. 1976 Effect of temperature on tryptophan fluorescence of βlactoglobulin B. Biochimica et Biophysica Acta 434 324332CrossRefGoogle ScholarPubMed
Nakano, H. & Yasui, T. 1979 Pulsed nuclear magnetic resonance studies of water in myosin suspension during dehydration. Agricultural and Biological Chemistry 43 8994Google Scholar
Oakes, J. 1976 a Protein hydration. Nuclear magnetic resonance relaxation studies of the state of water in native bovine serum albumin solutions. Journal of the Chemical Society, Faraday Transactions I 72 216227Google Scholar
Oakes, J. 1976 b Thermally denaturated proteins. Nuclear magnetic resonance, binding isothertn nnd Chemical modification studies of thermally denatured bovine serum albumin. Journal of the Chemical Society. Faraday Transactions I 72 228237Google Scholar
Pfeil, W. 1981 Thermodynamics of α-lactalbumin unfolding. Biophysical Chemistry 13 181–180CrossRefGoogle ScholarPubMed
Privalov, P. L. 1974 Thermal investigations of biopolymer solutions and scanning miorocalorimetry. FEBS Letters 40 (Supplement 23) S140153CrossRefGoogle Scholar
Privalov, P. L. & Khechinashvili, N. N. 1974 A thermodynamic approach to the problem of stabilisation of globular protein structure: a calorimetric study. Journal of Molecular Biology 86 665684CrossRefGoogle Scholar
Pumpernik, D., Fajt, B., Lapanje, S. & Ažman, A. 1975 NMR relaxation study of the thermal denaturation of lysozyme. Zeitschrift für Naturforschung 30C 294295CrossRefGoogle Scholar
Richardson, S. J., Baianu, I. C. & Steinberg, M. P. 1986 Mobility of water in wheat flour suspensions as studied by proton and oxygen-17 nuclear magnetic resonance. Journal of Agricultiiral and Food Chemistry 34 1723CrossRefGoogle Scholar
Rowland, S. J. 1938 The determination of the nitrogen distribution in milk. Journal of Dairy Research 9 4246CrossRefGoogle Scholar
Rüegg, M., Moor, U. & Blanc, B. 1977 a A calorimetric study of the thermal denaturation of whey proteins in simulated milk ultrafiltrate. Journal of Dairy Research 44 509520CrossRefGoogle Scholar
Rüegg, M., Moor, U., Lukesch, A. & Blanc, B. 1977 b In Application of Calorimetry in Life Sciences pp. 5973 (Eds Lamprecht, I. and Schaarschmidt, B.) Berlin: Walter de Gruyter.Google Scholar
Rydzy, M. & Skrzyński, W. 1980 Investigation of β-galactosidase thermal denaturation by nuclear magnetic relaxation method. Studio Biophysica 78 119126Google Scholar
Rydzy, M. & Skrzyński, W. 1982 1H-NMR relaxation studies of native and thermally denaturated lysozyme solutions. An isotope dilution experiment. Biochimica et Biophysica Acta 705 83–37Google ScholarPubMed
Sawyer, W. H. 1968 Heat denaturation of bovine βlactoglobulins and relevance of disulfide aggregation. Journal of Dairy Science 51 323329CrossRefGoogle Scholar
Watanabe, K. & Klostermeyer, H. 1976 Heat-induced changes in sulphydryl and disulphide levels of βlactoglobulin A and the formation of polymers. Journal of Dairy Research 43 411418CrossRefGoogle Scholar
Yasui, T., Ishioroshi, M., Nakano, H. & Samejima, K. 1979 Changes in shear modulus, ultrastructure and spin-spin relaxation times of water associated with heat-induced gelation of myosin. Journal of Food Science 44 12011204, 1211CrossRefGoogle Scholar
Zadow, J. G. 1986 Functionality of dairy products. Australian Journal of Dairy Technology 41 9699Google Scholar
Zimmerman, J. R. & Brittin, W. E. 1957 Nuclear magnetic resonance studies in multiple-phase Systems: lifetime of a water molecule in an adsorbing phase on silica gel. Journal of Physical Chemistry 61 13281333CrossRefGoogle Scholar