Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-08T15:03:09.503Z Has data issue: false hasContentIssue false

Growth of lactic acid bacteria and bifidobacteria on lactose and lactose-related mono-, di- and trisaccharides and correlation with distribution of β–galactosidase and phospho-β–galactosidase

Published online by Cambridge University Press:  01 June 2009

John B. Smart
Affiliation:
New Zealand Dairy Research Institute, Private Bag, Palmerston North, New Zealand
Christopher J. Pillidge
Affiliation:
New Zealand Dairy Research Institute, Private Bag, Palmerston North, New Zealand
Jean H. Garman
Affiliation:
New Zealand Dairy Research Institute, Private Bag, Palmerston North, New Zealand

Summary

Spectrophotometric assays of β–galactosidase (EC 3.2.1.23) and phospho-β–galactosidase (EC 3.2.1.85) activity were used to survey the lactose utilization pathways of lactic acid bacteria and bifidobacteria. β–Galactosidase activity was found in all six genera represented (Lactococcus, Streptococcus, Leuconostoc, Lactobacillus, Pediococcus and Bifidobacterium) while phospho-β–galactosidase was restricted to the lactococci, two Lactobacillus and two Leuconostoc species. A number of strains of Lactococcus lactis, Lactobacillus casei and Leuconostoc spp. contained both enzymes. Enzyme activities varied when cells were grown on different sugars, but in general were low or absent for cells grown on glucose compared with lactose. Two lactose-related compounds, lactulose and galactosyl lactose, believed to be specific growth factors for bifidobacteria, supported growth amongst a wide range of lactic acid bacteria in addition to bifidobacteria. Growth on galactosyl lactose was restricted to some but not all strains containing β–galactosidase, implying that the presence of β–galactosidase is insufficient by itself to ensure utilization of galactosyl lactose. DNA fragments that encoded the Lactococcus lactis subsp. cremoris phospho-β–galactosidase gene or the β–galactosidase genes of Streptococcus salivarius subsp. thermophilus or Lactobacillus delbrueckii subsp. bulgaricus were isolated and used as probes in DNA-DNA hybridizations. Little or no hybridization was detected between these probes and plasmid or genomic DNA isolated from heterologous species, despite the presence of the corresponding enzyme activity in the strains probed.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderson, D. G. & McKay, L. L. 1983 Simple and rapid method for isolating large plasmid DNA from lactic streptococci. Applied and Environmental Microbiology 46 549552CrossRefGoogle ScholarPubMed
Bhowmik, T. & Marth, E. H. 1990 Beta-galactosidase of Pediococcus species: induction, purification and partial characterization. Applied Microbiology and Biotechnology 33 317323CrossRefGoogle Scholar
Bradford, M. M. 1976 A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye-binding. Analytical Biochemistry 72 248254CrossRefGoogle ScholarPubMed
Cesca, B., Manca De Nadra, M. C., Strasser De Saad, A. M., Pesce De Ruis Holgardo, A. & Oliver, G. 1984 β–D-Galactosidase of Lactobacillus species. Folia. Microbiologica 29 288294CrossRefGoogle ScholarPubMed
Chassy, B. M. & Thompson, J. 1983 Regulation of lactose-phosphoenolpyruvate-dependent phospho-transferase system and β–D-phosphogalactoside galactohydrolase activities in Lactobacillus casei. Journal of Bacteriology 154 11951203CrossRefGoogle Scholar
Collins, M. A. & Thompson, J. K. 1992 Lactose metabolism and lactase gene sequence homologies amongst lactobacilli. Journal of Applied Bacteriology 73 237242CrossRefGoogle Scholar
Crow, V. L., Davey, G. P., pearce, L. E. & Thomas, T. D. 1983 Plasmid linkage of the D-tagatose 6-phosphate pathway in Streptococcus lactis: effect on lactose and galactose metabolism. Journal of Bacteriology 153 7683CrossRefGoogle ScholarPubMed
David, S., Stevens, H., Van Riel, M., Simons, G. & De Vos, W. M. 1992 Leuconostoc lactis β–galactosidase is encoded by two overlapping genes. Journal of Bacteriology 174 44754481CrossRefGoogle ScholarPubMed
De Vos, W. M. & Gasson, M. J. 1989 Structure and expression of the Lactococcus lactis gene for phospho-β–galactosidase (lacG) in Escherichia coli and L. lactis. Journal of General Microbiology 135 18331846Google ScholarPubMed
De Vos, W. M. & Simons, G. 1988 Molecular cloning of lactose genes in dairy lactic streptococci: the phospho-β–galactosidase and β–galactosidase genes and their expression products. Biochimie 70 461473CrossRefGoogle ScholarPubMed
Deya, E. 1986 [Recent studies on the utilization of lactose.] Japanese Journal of Dairy and Food Science 35 A321–A327Google Scholar
Farrow, J. A. E. 1980 Lactose hydrolysing enzymes in Streptococcus lactis and Streptococcus cremoris and also in some other species of streptococci. Journal of Applied Bacteriology 49 493503CrossRefGoogle ScholarPubMed
Fisher, K., Johnson, M. C. & Ray, B. 1985 Lactose hydrolyzing enzymes in Lactobacillus acidophilus strains. Food Microbiology 2 2329CrossRefGoogle Scholar
Fordyce, A. M., Crow, V. L. & Thomas, T. D. 1984 Regulation of product formation during glucose or lactose limitation in non-growing cells of Streptococcus lactis. Applied and Environmental Microbiology 48 332337CrossRefGoogle ScholarPubMed
Gawehn, K. & Bergmeyer, H. U. 1974 D-(–)-lactate. In Methods of Enzymatic Analysis, 2nd English edn, vol. 3, pp. 14921495 (Ed. Bergmeyer, H. U.). Weinheim: Verlag ChemieGoogle Scholar
Gutmann, I. & Wahlefeld, A.-W. 1974 L-( + )-lactate determination with LDH and NAD. In Methods of Enzymatic Analysis, 2nd English edn, vol. 3, pp. 14641468 (Ed. Bergmeyer, H. U.). Weinheim: Verlag ChemieGoogle Scholar
Herman, R. E. & McKay, L. L. 1986 Cloning and expression of the β–D-galactosidase gene from Streptococcus thermophilus in Escherichia coli. Applied and Environmental Microbiology 52 4550CrossRefGoogle ScholarPubMed
Hickey, M. W., Hillier, A. J. & Jago, G. R. 1986 Transport and metabolism of lactose, glucose, and galactose in homofermentative lactobacilli. Applied and Environmental Microbiology 51 825831CrossRefGoogle ScholarPubMed
Hutkins, R. W. & Ponne, C. 1991 Lactose uptake driven by galactose efflux in Streptococcus thermophilus: evidence for a galactose-lactose antiporter. Applied and Environmental Microbiology 57 941944CrossRefGoogle ScholarPubMed
Jarvis, B. D. W., Scott, K. F., Hughes, J. E., Djordjevic, M., Rolfe, B. G. & Shine, J. 1983 Conservation of genetic information between different Rhizobium species. Canadian Journal of Microbiology 29 200209CrossRefGoogle Scholar
Kurz, G. & Wallenfels, K. 1974 Lactose and other β–D-galactosides. In Methods of Enzymatic Analysis, 2nd English edn, vol. 3, pp. 11801184 (Ed. Bergmeyer, H. U.). Weinheim: Verlag ChemieGoogle Scholar
McKay, L., Miller, A., Sandine, W. E. & Elliker, P. R. 1970 Mechanisms of lactose utilization by lactic acid streptococci: enzymatic and genetic analyses. Journal of Bacteriology 102 804809CrossRefGoogle ScholarPubMed
Maniatis, T., Fritsch, E. F. & Sambrook, J. 1982 Molecular Cloning: A Laboratory Manual. New York: Cold Spring Harbor LaboratoryGoogle Scholar
Milliere, J. B., Mathot, A.-G., Schmitt, P. & Divies, C. 1989 Phenotypic characterization of Leuconostoc species. Journal of Applied Bacteriology 67 529542CrossRefGoogle Scholar
Nishikawa, I. 1982 [Effect of oligosaccharides in modified dried milk for infants.] Japanese Journal of Dairy and Food Science 31 A239–A243Google Scholar
Obst, M., Hehn, R., Vogel, R. F. & Hammes, W. P. 1992 Lactose metabolism in Lactobacillus curvatus and Lactobacillus sake. FEMS Microbiology Letters 97 209214CrossRefGoogle Scholar
Petuely, F. 1957 [Bifidus flora in bottle-fed infants through bifidogenic substances (Bifidus factor).] Zeitschrift für Kinderheilkunde 79 174179CrossRefGoogle Scholar
Porter, E. V. & Chassy, B. M. 1988 Nucleotide sequence of the β–u-phosphogalactoside galactohydrolase gene of Lactobacillus casei: comparison to analogous pbg genes of other Gram-positive organisms. Gene 62 263276CrossRefGoogle ScholarPubMed
Premi, L., Sandine, W. E. & Elliker, P. R. 1972 Lactose-hydrolyzing enzymes of Lactobacillus species. Applied Microbiology 24 5157CrossRefGoogle ScholarPubMed
Romano, A. H., Brino, G., Peterkofsky, A. & Reizer, J. 1987 Regulation of β–galactoside transport and accumulation in heterofermentative lactic acid bacteria. Journal of Bacteriology 169 55895596CrossRefGoogle ScholarPubMed
Schmidt, B. F., Adams, R. M., Requadt, C., Power, S. & Mainzer, S. E. 1989 Expression and nucleotide sequence of the Lactobacillus bulgaricus β–galactosidase gene cloned in Escherichia coli. Journal of Bacteriology 171 625635CrossRefGoogle ScholarPubMed
Shimizu-Kadota, M. 1987 Properties of lactose plasmid pLY101 in Lactobacillus casei. Applied and Environmental Microbiology 53 29872990CrossRefGoogle ScholarPubMed
Smart, J. B. 1991 Transferase reactions of the β–galactosidase from Streptococcus thermophilus. Applied Microbiology and Biotechnology 34 495501CrossRefGoogle Scholar
Snell, E. E., Kitay, E. & Hoff-J⊘rgensen, E. 1948 Carbohydrate utilization by a strain of Lactobacillus bulgaricus. Archives of Biochemistry 18 495510Google ScholarPubMed
Southern, E. M. 1975 Detection of specific sequences among DNA fragments separated by gel electrophoresis. Journal of Molecular Biology 98 503517CrossRefGoogle ScholarPubMed
Thomas, T. D. & Crow, V. L. 1983 Lactose and sucrose utilization by Streptococcus thermophilus. FEMS Microbiology Letters 17 1317CrossRefGoogle Scholar
Thomas, T. D. & Crow, V. L. 1984 Selection of galactose-fermenting Streptococcus thermophilus in lactose-limited chemostat cultures. Applied and Environmental Microbiology 48 186191CrossRefGoogle ScholarPubMed
Thomas, T. D., Jarvis, B. D. W. & Skipper, N. A. 1974 Localization of proteinase(s) near the cell surface of Streptococcus lactis. Journal of Bacteriology 118 329333CrossRefGoogle ScholarPubMed
Thomas, T. D., McKay, L. L. & Morris, H. A. 1985 Lactate metabolism by pediococci isolated from cheese. Applied and Environmental Microbiology 49 908913CrossRefGoogle ScholarPubMed
Thompson, J. 1988 Lactic acid bacteria: model systems for in vivo studies of sugar transport and metabolism in Gram-positive organisms. Biochimie 70 325336CrossRefGoogle ScholarPubMed
Thuring, R. W. J., Sanders, J. P. M. & Borst, P. 1975 A freeze-squeeze method for recovering long DNA from agarose gels. Analytical Biochemistry 66 213220CrossRefGoogle ScholarPubMed
Tinson, W., Hillier, A. J. & Jago, G. R. 1982 Metabolism of Streptococcus thermophilus. 1. Utilization of lactose, glucose and galactose. Australian Journal of Dairy Technology 37 813Google Scholar
Tochikura, T., Sakai, K., Fujiyoshi, T., Tachiki, T. & Kumagai, H. 1986 p-Nitrophenyl glycoside-hydrolyzing activities in bifidobacteria and characterization of β–D-galactosidase of Bifidobacterium longum 401. Agricultural and Biological Chemistry 50 22792286Google Scholar
Van Rooijen, R. J. & De Vos, W. M. 1990 Molecular cloning, transcriptional analysis, and nucleotide sequence of lacR, a gene encoding the represser of the lactose phosphotransferase system of Lactococcus lactis. Journal of Biological Chemistry 265 1849918503CrossRefGoogle Scholar
Wilson, K. 1990 Preparation of genomic DNA from bacteria. In Current Protocols in Molecular Biology, supplement 9 unit 2.4 (Eds Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Smith, J. A., Seidman, J. G. and Struhl, K.). New York: Greene Publishing Associates and John Wiley InterscienceGoogle Scholar
Yu, P.-L., Appleby, R. D., Pritchard, G. G. & Limsowtin, G. K. Y. 1989 Restriction mapping and localization of the lactose-metabolizing genes of Streptococcus cremoris pDI-21. Applied Microbiology and Biotechnology 30 7174CrossRefGoogle Scholar
Yu, P.-L., Smart, J. B. & Ennis, B. M. 1987 Differential induction of β–galactosidase and phospho-β–galactosidase activities in the fermentation of whey permeate by Clostridium acetobutylicum. Applied Microbiology and Biotechnology 26 254257CrossRefGoogle Scholar