Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-02T18:47:28.389Z Has data issue: false hasContentIssue false

Evaluation of bovine rennets in terms of absolute concentrations of chymosin and pepsin A

Published online by Cambridge University Press:  01 June 2009

Patrice Martin
Affiliation:
Institut National de la Recherche Agronomique, CNRZ
Jean-Claude Collin
Affiliation:
Institut National de la Recherche Agronomique, CNRZ
Pascaline Garnot
Affiliation:
Institut National de la Recherche Agronomique, CNRZ
Bruno Ribadeau Dumas
Affiliation:
Institut National de la Recherche Agronomique, CNRZ
Germain Mocquot
Affiliation:
Institut National de la Recherche Agronomique, CNRZ

Summary

A method for determining chymosin and bovine pepsin A in commercial extracts of bovine veils, based on the use of the synthetic hexapeptide (Leu-Ser-Phe(NO2)-Nle-Ala-Leu-OMe) as reference substrate, is reported. Chymosin and bovine pepsin A were separated chromatographically from extracts and assayed for clotting activity on a reconstituted skim-milk standardized with reference chymosin and bovine pepsin A, themselves standardized in relation to the hexapeptide. The effect of pH on the absorbance difference between the hexapeptide and the Leu-Ser-Phe(NO2) tripeptide resulting from its hydrolysis was studied. It was found that the ‘optimal’ pH for determining the activities of the reference enzyme solutions was 4·7.

Six chymosin and 3 bovine pepsin A preparations were assayed on the hexapeptide to define the relation between the proteolytic activity and the amount of active enzyme. At pH 4·7 and 30 °C 1 mg chymosin and 1 mg bovine pepsin A hydrolysed 100 and 2700 μm-peptide/s respectively. The clotting activity of these preparations was assayed on a reconstituted skim-milk to standardize it and thus define the relation between the clotting time and the amount of active enzyme. Chymosin had a specific clotting activity twice that of bovine pepsin A. At equal clotting activities, bovine pepsin A was 55 times more active than chymosin on the hexapeptide at pH 4·7.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Castle, A. V. & Wheelock, J. V. (1971). Journal of Dairy Research 38, 6971.CrossRefGoogle Scholar
Collin, J. C., Grappin, R. & Legraet, Y. (1977). Revue Laitière Française no. 355, pp. 389, 391394.Google Scholar
Collin, J. C. & Grappin, R. (1978). Revue Laitière Française no. 369, pp. 721724.Google Scholar
Collin, J. C., Martin, P., Garnot, P., Ribadeau Dumas, B. & Mocquot, G. (1981). Milchwissenschaft 36, 3235.Google Scholar
De Koning, P. J., van Rooijen, P. J. & Visser, S. (1978). Netherlands Milk and Dairy Journal 32, 232244.Google Scholar
Escher, E. & Schwyzer, R. (1974). FEBS Letters 46, 347350.CrossRefGoogle Scholar
Foltmann, B. (1962). Comptes Rendus des Travaux du Laboratoire Carlsberg 32, 425444.Google Scholar
Garnot, P., Thapon, J. L., Mathieu, C. M., Maubois, J. L. & Ribadeau Dumas, B. (1972). Journal of Dairy Science 55, 16411650.CrossRefGoogle Scholar
Green, M. L. (1977). Journal of Dairy Research 44, 159188.CrossRefGoogle Scholar
Hill, R. D. (1969). Journal of Dairy Research 36, 409415.CrossRefGoogle Scholar
Holter, H. (1932). Biochemische Zeitschrift 255, 160188.Google Scholar
Inouye, K. & Fruton, J. S. (1967). Biochemistry 6, 17651777.CrossRefGoogle Scholar
Irvine, G. B. & Elmore, D. T. (1979). Biochemical Journal 183, 389394.CrossRefGoogle Scholar
Lang, H. M. & Kassell, B. (1971). Biochemistry 10, 22962301.Google Scholar
Martin, P., Raymond, M.-N., Bricas, E. & Ribadeau Dumas, B. (1980). Biochimica et Biophysica Acta 612, 410420.CrossRefGoogle Scholar
Raymond, M. N. (1977). Thesis, University of Paris-Sud, Orsay, France.Google Scholar
Raymond, M. N., Bricas, E., Salesse, R., Garnier, J., Garnot, P. & Ribadeau Dumas, B. (1973). Journal of Dairy Science 56, 419422.CrossRefGoogle Scholar
Raymond, M. N., Garnier, J., Bricas, E., Cilianu, S., Blasnic, M., Chaix, A. & Lefrancier, P. (1972). Biochimie 54, 145154.CrossRefGoogle Scholar
Rothe, G. A. L., Axelsen, N. H., JØhnk, P. & Foltmann, B. (1976). Journal of Dairy Research 43, 8595.CrossRefGoogle Scholar
Rothe, G. A. L., Harboe, M. K. & Martiny, S. C. (1977). Journal of Dairy Research 44, 7377.CrossRefGoogle Scholar
Salesse, R. & Garnier, J. (1976). Journal of Dairy Science 59, 12151221.CrossRefGoogle Scholar
Schattenkerk, C., Holtkamp, I., Hessing, J. G. M., Kerling, K. E. T. & Havinga, E. (1971). Recueil de Travaux Chimiques des Pays-Bas 90, 13201322.CrossRefGoogle Scholar