Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-19T01:27:41.914Z Has data issue: false hasContentIssue false

Development of a method based on chemometric analysis of Raman spectra for the discrimination of heterofermentative lactobacilli

Published online by Cambridge University Press:  17 March 2011

Pablo Mobili
Affiliation:
Centro de Investigación y Desarrollo en Criotecnología de Alimentos (Conicet La Plata, UNLP), Argentina
Cuauhtémoc Araujo-Andrade*
Affiliation:
Unidad Académica de Física de la Universidad Autónoma de Zacatecas. Zacatecas, Mexico
Alejandra Londero
Affiliation:
Centro de Investigación y Desarrollo en Criotecnología de Alimentos (Conicet La Plata, UNLP), Argentina
Claudio Frausto-Reyes
Affiliation:
Centro de Investigaciones en Óptica, A.C. Unidad Aguascalientes, Mexico
Rumen Ivanov Tzonchev
Affiliation:
Unidad Académica de Física de la Universidad Autónoma de Zacatecas. Zacatecas, Mexico
Graciela L De Antoni
Affiliation:
Centro de Investigación y Desarrollo en Criotecnología de Alimentos (Conicet La Plata, UNLP), Argentina
Andrea Gómez-Zavaglia
Affiliation:
Centro de Investigación y Desarrollo en Criotecnología de Alimentos (Conicet La Plata, UNLP), Argentina
*
*For correspondence; e-mail: [email protected]

Abstract

In this work, a method based on Raman spectroscopy in combination with Principal Component Analysis (PCA) and Partial Least Square-Discriminant Analysis (PLS-DA) has been developed for the rapid differentiation of heterofermentative related lactobacilli. In a first approach, Lactobacillus kefir strains were discriminated from other species of heterofermentative lactobacilli: Lb. parakefir and Lb. brevis. After this first approach, PCA allowed for a clear differentiation between Lb. parakefir and Lb.brevis. For the first level of discrimination, PCA was performed on the whole spectra and also on delimited regions, defined taking into consideration the loading values. The best regions allowing a clear differentiation between Lb. kefir and non-Lb. kefir strains were found to be: the 1700–1500 cm−1, 1500–1185 cm−1 and 1800–400 (whole spectrum) cm−1 Raman ranges. In order to develop a classification rule, PLS-DA was carried out on the mentioned regions. This method permitted the discrimination and classification of the strains under study in two groups: Lb. kefir and non-Lb. kefir. The model was further validated using lactobacilli strains from different culture collections or strains isolated from kefir grains previously identified using molecular methods. The second approach based on PCA was also performed on the whole spectra and on delimited regions, being the regions 1700–1500 cm−1, 1500–1185 cm−1 and 1185–1020 cm−1, i.e., those allowing the clearest discrimination between Lb. parakefir and Lb. brevis. The results obtained in this work, allowed a clear discrimination within heterofermentative lactobacilli strains, proteins being the biological structures most determinant for this discrimination.

Type
Research Article
Copyright
Copyright © Proprietors of Journal of Dairy Research 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amiel, C, Mariey, L, Curk-Daubie, MC, Pichon, P & Travert, J 2000a Potentiality of Fourier transform infrared spectroscopy (FTIR) for discrimination and identification of dairy lactic acid bacteria. Le Lait 80 445459CrossRefGoogle Scholar
Amiel, C 2000b Potentialités de la spectroscopie infrarouge à transformée de Fourier (IRTF) pour l'identification et la caractérisation de bactéries d'implication laitière. Ph.D Thesis. University of Caen, pp. 7195Google Scholar
Amiel, C, Mariey, L, Denis, C, Pichon, P & Travert, J 2001 FTIR spectroscopy and taxonomic purpose: Contribution to the classification of lactic acid bacteria. Le Lait 81 249255CrossRefGoogle Scholar
Bosch, A, Golowczyc, MA, Abraham, AG, Garrote, GL, De Antoni, GL & Yantorno, O 2006 Rapid discrimination of lactobacilli isolated from kefir grains by FT-IR spectroscopy. International Journal of Food Microbiology 111 280287CrossRefGoogle ScholarPubMed
de Man, JC, Rogosa, M & Sharpe, ME 1960 A medium for the cultivation of lactobacilli. Journal of Applied Bacteriology 23 130135CrossRefGoogle Scholar
De Gelder, J, De Gussem, K, Vandenabeele, P, Vancanneyt, M, De Vos, P & Moens, L 2007 Methods for extracting biochemical information from bacterial Raman spectra: An explorative study on Cupriavidus metallidurans. Analytica Chimica Acta 603 167175CrossRefGoogle Scholar
Delfederico, L, Hollmann, A, Martínez, M, Iglesias, NG, De Antoni, GL & Semorile, L 2006 Molecular identification and typing of lactobacilli isolated from kefir grains. Journal of Dairy Research 73 2027CrossRefGoogle ScholarPubMed
Esbensen, KH 2005 In: Multivariate Data Analysis – In Practice, CAMO Process AS, Esbjerg, Denmark, 5th EditionGoogle Scholar
Garrote, GL, Abraham, AG & De Antoni, GL 2000 Inhibitory power of kefir: the role of organic acids. Journal of Food Protection 63 364369CrossRefGoogle ScholarPubMed
Garrote, GL, Abraham, AG & De Antoni, GL 2001 Chemical and microbiological characterisation of kefir grains. Journal of Dairy Research 68 639652CrossRefGoogle ScholarPubMed
Gaus, K, Rösch, P, Petry, R, Peschke, KD, Ronneberger, O, Burkhardt, H, Baumann, K & Popp, J 2006 Classification of lactic acid bacteria with UV-resonance Raman spectroscopy. Biopolymers 82 286290CrossRefGoogle ScholarPubMed
Golowczyc, MA, Mobili, P, Garrote, GL, Abraham, AG & De Antoni, GL 2007 Protective action of Lactobacillus kefir carrying S-layer protein against Salmonella enterica serovar Enteritidis. International Journal of Food Microbiology 118 264273CrossRefGoogle ScholarPubMed
Golowczyc, MA, Gugliada, MJ, Hollmann, A, Delfederico, L, Garrote, GL, Abraham, AG, Semorile, L & De Antoni, GL 2008 Characterization of homofermentative lactobacilli isolated from kefir grains: potential use as probiotic. Journal of Dairy Research 75 211217CrossRefGoogle ScholarPubMed
Lefier, D, Lamprell, H & Mazerolles, G 2000 Evolution of Lactococcus strains during ripening in Brie cheese using Fourier transform infrared spectroscopy. Le Lait 80 247254CrossRefGoogle Scholar
López-Díez, EC & Goodacre, R 2004 Characterization of microorganisms using UV resonance Raman spectroscopy and chemometrics. Analytical Chemistry 76 585591CrossRefGoogle Scholar
Luginbühl, W, Jimeno, J & Zehntner, U 2006 Identification of seven species of the Lactobacillus acidophilus group by FT-IR spectroscopy. Lebensmittel-Wissenschaft und Technologie 39 152158CrossRefGoogle Scholar
Martens, H & Næs, T 1989 In: Methods for calibration, in Multivariate Calibration, Wiley, Chichester, England. Chapter 3, pp. 97Google Scholar
Maquelin, K, Kirschner, C, Choo-Smith, LP, Van den Braak, N, Endtz, H, Naumann, D & Puppels, GJ 2002a Identification of medically relevant microorganisms by vibrational spectroscopy. Journal of Microbiological Methods 51 255271CrossRefGoogle ScholarPubMed
Maquelin, K, Choo-Smith, LP, Endtz, HP, Bruining, HA & Puppels, GJ 2002b Rapid Identification of Candida Species by Confocal Raman Microspectroscopy. Journal of Clinical Microbiology 40 594600CrossRefGoogle ScholarPubMed
Mello, C, Ribeiro, D, Novaes, F & Poppi, RJ 2005 Rapid differentiation among bacteria that cause gastroenteritis by use of low-resolution Raman spectroscopy and PLS discriminant analysis. Analytical and Bioanalytical Chemistry 383 701706CrossRefGoogle ScholarPubMed
Naumann, D, Helm, D, Labischinski, H & Giesbrecht, P 1991a In Modern Techniques for Rapid Microbiological Analysis, pp. 4396 (Ed. Nelson, WH). VCH Publishers, New YorkGoogle Scholar
Naumann, D, Helm, D & Labischinski, H 1991b Microbiological characterizations by FT-IR spectroscopy. Nature 351 8182CrossRefGoogle ScholarPubMed
Naumann, D & Meyers, RA (Eds.) 2000 Infrared spectroscopy in microbiology. In Encyclopedia of analytical chemistry. Wiley, Chichester, UK, pp. 102131Google Scholar
Naumann, D 2001 In Practical Spectroscopy, pp. 323378 (Eds. Gremlich, HU & Yan, B). Dekker, New York, vol. 24Google Scholar
Oust, A, Møretrø, T, Kirschner, C, Narvhus, JA & Kohler, A 2004a. FT-IR spectroscopy for identification of closely related lactobacilli. Journal of Microbiological Methods 59 149162CrossRefGoogle ScholarPubMed
Oust, A, Møretrø, T, Kirschner, C, Narvhus, JA & Kohler, A 2004b Evaluation of the robustness of FT-IR spectra of lactobacilli towards changes in the bacterial growth conditions. FEMS Microbiology Letters 239 111116CrossRefGoogle ScholarPubMed
Oust, A, Møretrø, T, Naterstad, K, Sockalingum, GD, Adt, I, Manfait, M & Kohler, A 2006 Fourier transform infrared and Raman spectroscopy for characterization of Listeria monocytogenes strains. Applied and Environmental Microbiology 72 228232CrossRefGoogle ScholarPubMed
Rösch, P, Schmitt, M, Kiefer, W & Popp, J 2003 The identification of microorganisms by micro-Raman spectroscopy. Journal of Molecular Structure 661–662 363369CrossRefGoogle Scholar
Saloff Coste, CJ 1996 Kefir. Danone World Newsletter, No: 11Google Scholar
Weinrichter, B, Luginbühl, W, Rohm, H & Jimeno, J 2001 Differentiation of facultatively heterofermentative lactobacilli from plants, milk, and hard type cheeses by SDS-PAGE, RAPD, FTIR, Energy Source Utilization and Autolysis Type. Lebensmittel-Wissenschaft und Technologie 34 556566CrossRefGoogle Scholar
Zhu, Q, Quivey, RG & Berger, AJ 2004 Measurement of bacterial concentration fractions in polymicrobial mixtures by Raman microspectroscopy. Journal of Biomedical Optics 9 11821186CrossRefGoogle ScholarPubMed