Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-12-02T22:40:29.447Z Has data issue: false hasContentIssue false

The chemical composition and physical properties of fractions of milk fat obtained by a commercial fractionation process

Published online by Cambridge University Press:  01 June 2009

R. Norris
Affiliation:
New Zealand Dairy Research Institute, Palmerston North, New Zealand
I. K. Gray
Affiliation:
New Zealand Dairy Research Institute, Palmerston North, New Zealand
A. K. R. McDowell
Affiliation:
New Zealand Dairy Research Institute, Palmerston North, New Zealand
R. M. Dolby
Affiliation:
New Zealand Dairy Research Institute, Palmerston North, New Zealand

Summary

Samples of liquid and solid fractions obtained by a commercial process from anhydrous milk fat of softening point (S.P.) 33·5–34°C had S.P. values of 22–23°C and 36–38°C respectively.

Determinations of fatty acid composition by GLC showed that unsaturated and short chain fatty acids were present in increased concentration in the liquid fraction (average 37·8 and 12·4% as compared with 35·1 and 10·8% in the original milk fat) and long chain saturated acids in the solid fraction (average 57·8 as compared with 53·8%). There was some concentration of carotene and vitamin A, and to a lesser extent of cholesterol, in the liquid fraction.

Crystallization and melting curves determined by a differential scanning calorimeter (DSC) showed that while the liquid fraction was completely melted at 25°C, the solid fraction contained an increased proportion of fat melting between 30 and 40°C. In addition to these high melting triglycerides the solid fraction also contained some 65% of fat in the liquid phase at the original crystallization temperature of 25°C.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1971

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Antilla, V. (1966). Meijeritiet. Aikakausk. 27, 38.Google Scholar
Barnicoat, C. R. (1944). Analyst, Lond. 69, 176.CrossRefGoogle Scholar
British Standards Institution (1961). British Standard 769.Google Scholar
Brown, J. B. (1941). Chem. Rev. 29, 333.CrossRefGoogle Scholar
Chapman, D. (1965). The Structure of Lipids, p. 272. London: Methuen and Co. Ltd.Google Scholar
Cornwell, D. G., Backderf, R. H., Wilson, C. L. & Brown, J. B. (1953). Archs Biochem. Biophys. 46, 364.CrossRefGoogle Scholar
deMan, J. M. (1961 a). J. Dairy Res. 28, 81.CrossRefGoogle Scholar
deMan, J. M. (1961 b). J. Dairy Res. 28, 117.CrossRefGoogle Scholar
deMan, J. M. (1968 a). Can. Inst. Fd Technol. J. 1, 90.CrossRefGoogle Scholar
deMan, J. M. (1968 b). In Dairy Lipids and Lipid Metabolism, pp. 1527. (Eds Brink, M. F. and Kritchevsky, D..) Westport, Conn.: Avi Publishing Co.Google Scholar
Dolby, R. M. (1961). Aust. J. Dairy Technol. 16, 89.Google Scholar
Fjaervoll, A. (1970). Svenska Mejeritidn. 61, 491.Google Scholar
Hannewijk, J., Haighton, A. J. & Hendrikse, P. W. (1964). In Analysis and Characterisation of Oils, Fats and Fat Products, Vol. 1, pp. 125127, 176180. (Ed. Boekenoogen, H. A..) London: Interscience Publishers.Google Scholar
Hartman, L. (1958). Chem. Rev. 58, 845.CrossRefGoogle Scholar
Hawke, J. C., Hansen, R. P. & Shorland, F. B. (1959). J. Chromat. 2, 547.CrossRefGoogle Scholar
Hay, J. D. & Morrison, W. R. (1970). Biochim. biophys. Acta 202, 237.CrossRefGoogle Scholar
Lampert, L. M. (1930). Ind. Engng Chem., Fundam. 2, 159.Google Scholar
Lees, T. M. & Demuria, P. J. (1962). J. Chromat. 8, 108.CrossRefGoogle Scholar
Lutton, E. S. & Fehl, A. J. (1970). Lipids 5, 90.CrossRefGoogle Scholar
McDowell, A. K. R. & Creamer, L. K. (1970). N.Z. Jl Dairy Sci. Technol. 5, 14.Google Scholar
McDowell, A. K. R. & Mcdowall, F. H. (1953). J. Dairy Res. 20, 76.CrossRefGoogle Scholar
Mangold, H. K. & Mallins, D. C. (1960). J. Am. Oil Chem. Soc. 37, 383.CrossRefGoogle Scholar
Metcalfe, L. D., Schmitz, A. A. & Pelka, J. R. (1966). Analyt. Chem. 38, 514.CrossRefGoogle Scholar
Morse, L. M. & Jack, E. L. (1949). Fd Res. 14, 320.CrossRefGoogle Scholar
Mulder, H. (1953). Neth. Milk Dairy J. 7, 149.Google Scholar
Patton, S. & Keeney, P. G. (1958). J. Dairy Sci. 41, 1288.CrossRefGoogle Scholar
Reil, R. R. (1962). 16th Int. Dairy Congr., Copenhagen B, 23.Google Scholar
Richardson, T. (1968). In Dairy Lipids and Lipid Metabolism, pp. 414. (Eds Brink, M. F. and Kritchevsky, D..) Westport, Conn.: Avi Publishing Co.Google Scholar
Scott, T. W., Cook, L. J., Fergusson, K. A., McDonald, I. W., Buchanan, R. A. & Loftus Hills, G. (1970). Aust. J. Sci. 32, 293.Google Scholar
Sherbon, J. W. (1963). Ph.D. Thesis, Univ. Minnesota, U.S.A.Google Scholar
Sherbon, J. W. & Coulter, S. T. (1966). J. Dairy Sci. 49, 1126.CrossRefGoogle Scholar
Thompson, S. Y., Ganguly, J. & Kon, S. K. (1949). Br. J. Nutr. 3, 50.CrossRefGoogle Scholar
van Wijngaarden, D. (1967). Analyt. Chem. 39, 849.CrossRefGoogle Scholar
Yoncoskie, R. A., Holsinger, V. H., Posati, L. P. & Pallansch, M. J. (1969). J. Am. Oil Chem. Soc. 46, 489.CrossRefGoogle Scholar