Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-26T01:32:44.708Z Has data issue: false hasContentIssue false

The carbohydrate portions of milk glycoproteins

Published online by Cambridge University Press:  01 June 2009

Pierre Jollès
Affiliation:
Laboratory of Proteins, University of Paris V, 45 rue des Saints-Pères, F-75270 Paris Cedex 06, France

Summary

k-Casein is the main glycoprotein of cow's milk. Its polysaccharide part is O-glycosidically linked to threonine residue 133. It contains only 3 different sugars (Gal, GalNAc, NeuNAc), but a microheterogeneity has been detected at the sugar level. Two main polysaccharides have so far been characterized. The structure of the trisaccharide is NeuNAc α → 3 Gal β1 →3 GalNAc; the tetrasaccharide contains one additional sialic acid. The polysaccharide part of ovine k-casein resembles that of bovine k-casein, but contains also N-glycolyl neuraminic acid. Human k-casein contains 3 times more carbohydrate than bovine k-casein with 2 additional sugars, GlcNAc and Fuc. The various polysaccharide parts isolated from bovine colostrum k-caseinoglycopeptide are much more complex than those obtained from the normal glycopeptide, indicating an evolution of the sugar part as a function of time after parturition. Some aspects of the secondary structure of k-casein and the role of the sugar part are discussed. The carbohydrate moiety of another milk protein, human lactotransferrin, is also discussed briefly. It is comprised of 2 identical glycan groups, N-glycosidically linked to the protein, and quite different from the k-casein carbohydrate moiety.

Type
Section A. Biological Aspects of Milk Proteins
Copyright
Copyright © Proprietors of Journal of Dairy Research 1979

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alais, C. & Jollès, P.(1961). Biochimica et Biophysica Acta 51, 315.CrossRefGoogle Scholar
Alais, C., Mocquot, G., Nitschmann, H. & Zahler, P. (1953). Helvetica Chimica Acta 36, 1955.CrossRefGoogle Scholar
Brignon, G., Mercier, J.-C, B., Ribadeau Dumas & Das, B. C. (1972). FEBS Letters 27, 301.CrossRefGoogle Scholar
Chobert, J. -M., Mercier, J. -C, Bahy, C. & Hazé, G. (1976). FEBS Letters 72, 173.CrossRefGoogle Scholar
Delfour, A., Jollès, J., Alais, C. & Jollès, P. (1965). Biochemical and Biophysical Research Communications 19 452.CrossRefGoogle Scholar
Farrar, G. H. & Harbison, R. (1978). Biochemical Journal 171, 549.CrossRefGoogle Scholar
Fiat, A. -M., Alais, C. & Jollès, P. (1968). Chimia 22, 137.Google Scholar
Fiat, A. -M., Goussault, Y., Font, J. & Jollès, P. (1973). Immunochemistry 10, 355.CrossRefGoogle Scholar
Fiat, A. -M., Jollès, J. & Jollès, P. (1977). Comptes Rendus de l'Académie des Sciences, Série D 284, 393.Google Scholar
Finne, J. (1975). Biochimica et Biophysica Acta 412, 317.CrossRefGoogle Scholar
Fournet, B., Fiat, A. -M., Alais, C. & Jollès, P. (1979). Biochimica el Biophysica Acta 576, 339.CrossRefGoogle Scholar
Fournet, B., Fiat, A. -M., Montreuil, J. & Jollès, P. (1975). Biochimie 57, 161.CrossRefGoogle Scholar
Guérin, J., Alais, C., Jollès, J. & Jollès, P. (1979). Biochimica et Biophysica Acta 351, 325.CrossRefGoogle Scholar
Jollès, P. (1966). Angewandte Chemie, International Edition in English 5, 558.CrossRefGoogle Scholar
Jollès, P. (1975). Molecular and Cellular Biochemistry 7, 73.CrossRefGoogle Scholar
Jollès, P. & Alais, C. (1959). Biochimica et Biophysica Acta 34, 565.CrossRefGoogle Scholar
Jollès, P., Alais, C., Adam, A., Delfour, A. & Jollès, J. (1964). Chimia 18, 357.Google Scholar
Jollès, J., Alais, C. & JollèS, P. (1969). Nature, London 222, 668.CrossRefGoogle Scholar
Jollès, J., Fiat, A. -M., Alais, C. & Jollès, P. (1973). FEBS Letters 30, 173.CrossRefGoogle Scholar
Jollès, J., Fiat, A. -M., Schoentgen, F., Alais, C. & Jollès, P. (1974). Biochimica et Biophysica Acta 365, 335.CrossRefGoogle Scholar
Jollès, J., Mazurier, J., Boutigue, M. -H., Spik, G., Montreuil, J. & Jollès, P. (1976). FEBS Letters 69, 27.CrossRefGoogle Scholar
Jollès, J., Schoentgen, F., Alais, C. & Jollés, P. (1972). Chimia 20, 148.Google Scholar
Loucheux-Lefebvre, M. -H., Aubert, J. -P. & Jollès, P. (1978). Biophysical Journal 23, 323.CrossRefGoogle Scholar
Mackinlay, A. G. & Wake, R. G. (1965). Biochimica et Biophysica Acta 104, 167.CrossRefGoogle Scholar
Mercier, J. C., Uro, J., Ribadeau Dumas, B. & Grosclaude, F. (1972). European Journal of Biochemistry 27, 535.CrossRefGoogle Scholar
Montreuil, J. (1975). Pure and Applied Chemistry 42, 431.CrossRefGoogle Scholar
Montreuil, J. & Mullet, S. (1960). Comptes Rendus de l'Académie des Sciences 250, 1376.Google Scholar
Sinkinson, G. & Wheelock, J. V. (1970). Biochimica et Biophysica Acta 215, 517.CrossRefGoogle Scholar
Spik, G., Monsigny, M. & Montreuil, J. (1966). Comptes Rendus de l'Académie des Sciences 263, 893.Google Scholar
Spik, G., Vandersyppe, R., Tetaert, D., Han, K. K. & Montreuil, J. (1974). FEBS Letters 38, 213.CrossRefGoogle Scholar
Vaith, P., Assmann, G. & Uhlenbruck, G. (1978). Biochimica et Biophysica Acta 541, 234.CrossRefGoogle Scholar
Waugh, D. F. (1958). Discussions of the Faraday Society, No. 25, 186.CrossRefGoogle Scholar
Waugh, D. F. & Von Hippel, P. H. (1956). Journal of the American Chemical Society 78, 4576.CrossRefGoogle Scholar
Wheelock, J. V. & Knight, D. J. (1969). Journal of Dairy Research 36, 183CrossRefGoogle Scholar