Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-26T01:39:53.330Z Has data issue: false hasContentIssue false

Association of lipases with micellar and soluble casein complexes

Published online by Cambridge University Press:  01 June 2009

W. K. Downey
Affiliation:
National Dairying Research Centre, The Agricultural Institute, Fermoy, Co. Cork, Irish Republic
R. F. Murphy
Affiliation:
National Dairying Research Centre, The Agricultural Institute, Fermoy, Co. Cork, Irish Republic

Summary

The association of lipase with casein micelles and soluble casein complexes was investigated by gel-filtration on Sephadex G-200 and Sepharose 2B columns which were equilibrated with synthetic milk serum. Gel-filtration indicated that the molecular weight of casein micelles in milk is > 108 whereas the casein in colloidal phosphate-free milk is present as soluble complexes of molecular weight ca. 2×106 containing αs-, β- and κ-casein. The soluble complexes appear to be stabilized in the micelle by colloidal calcium phosphate linkages. On addition of pancreatic lipase to milk, activity was impaired due to binding of the enzyme both to micellar and to soluble casein complexes. The enzyme dissociated from the latter during gel-filtration on Sepharose 2B columns. The binding of lipase to casein was not dependent on the presence of colloidal phosphate and consequently complete micellar structure is not essential for association of lipase with casein. Binding of the lipase to phosvitin did not result in a loss of enzyme activity. Lipases in milk appear to be involved in the equilibrium between micellar and soluble casein. The activity of lipases in milk is apparently influenced by this equilibrium. Some problems encountered in the use of gel-filtration to study the interactions of lipases with caseins are described.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1970

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andrews, P. (1964). Biochem. J. 91, 222.CrossRefGoogle Scholar
Andrews, P. (1965). Bioehem. J. 96, 595.Google Scholar
Aschaffenburg, R. & Thymann, M. (1965). J. Dairy Sci. 68, 1524.CrossRefGoogle Scholar
Carroll, R. J., Thompson, M. P. & Nutting, G. C. (1968). J. Dairy Sci. 51, 1903.Google Scholar
Chandan, R. C. & Shahani, K. M. (1963). J. Dairy Sci. 46, 275.CrossRefGoogle Scholar
Desnuelle, P. (1961). Adv. Enzymol. 23, 129.Google Scholar
Downey, W. K. (1965). Ph.D. Thesis, University of Reading.Google Scholar
Downey, W. K. & Andrews, P. (1965 a). Biochem. J. 94, 642.CrossRefGoogle Scholar
Downey, W. K. & Andrews, P. (1965 b). Biochem. J. 94, 33P.Google Scholar
Downey, W. K. & Andrews, P. (1966). Biochem. J. 101, 651.Google Scholar
Downey, W. K. & Andrews, P. (1969). Biochem. J. 112, 559.CrossRefGoogle Scholar
Fox, P. F. & Tarassuk, N. P. (1968). J. Dairy Sci. 51, 826.Google Scholar
Fox, P. F., Yaguchi, M. & Tarassuk, N. P. (1967). J. Dairy Sci. 50, 307.CrossRefGoogle Scholar
Gaffney, P. J., Harper, W. J. & Gould, I. A. (1962). J. Dairy Sci. 45, 646.Google Scholar
Gaffney, P. J., Harper, W. J. & Gould, I. A. (1966). J. Dairy Sci. 49, 921.Google Scholar
Gaffney, P. J., Harper, W. J. & Gould, I. A. (1968). J. Dairy Sci. 51, 1161.Google Scholar
Harper, W. J., Gould, I. A. & Badami, M. (1956). J. Dairy Sci. 39, 910.Google Scholar
Korn, E. D. (1955). J. biol. Chem. 215, 1.Google Scholar
McGann, T. C. A. (1960). Ph.D. Thesis: National University of Ireland, Cork.Google Scholar
Margoliash, E. (1962). J. biol. Chem. 237, 2161.Google Scholar
Mecham, D. K. & Olcott, H. S. (1949). J. Am. chem. Soc. 71, 3670.CrossRefGoogle Scholar
Morr, C. V. (1967). J. Dairy Sci. 50, 1744.Google Scholar
Murphy, R. F. & Downey, W. K. (1969). J. Dairy Sci. 52, 113.Google Scholar
Nitschmann, Hs. von (1949). Helv. chim. Acta 32, 1258.CrossRefGoogle Scholar
Noble, R. W. Jr & Waugh, D. F. (1965). J. Am. chem. Soc. 87, 2236.CrossRefGoogle Scholar
Patel, C. V., Fox, P. F. & Tarassuk, N. P. (1968). J. Dairy Sci. 51, 1879.CrossRefGoogle Scholar
Phelps, R. A. & Putnam, F. W. (1960). In The Plasma Proteins, Vol. 1, p. 143. (Ed. Putnam, F. W.). New York: Academic Press Inc.Google Scholar
Pyne, G. T. & McGann, T. C. A. (1960). J. Dairy Res. 27, 9.Google Scholar
Rose, D. (1969). Dairy Sci. Abstr. 31, 171.Google Scholar
Saito, Z. (1963). Jap. J. zootech. Sci. 34, 41.Google Scholar
Saito, Z. & Hashimoto, Y. (1963). Jap. J. zootech. Sci. 34, 393.Google Scholar
Shahani, K. M. & Chandan, R. C. (1965). Archs Bioehem. Biophys. 111, 257.CrossRefGoogle Scholar
Shimmin, P. D. & Hill, R. D. (1964). J. Dairy Res. 31, 121.CrossRefGoogle Scholar
Skean, J. D. & Overcast, W. W. (1961). J. Dairy Sci. 44, 823.CrossRefGoogle Scholar
Spiro, R. G. & Spiro, M. J. (1963). Fedn Proc. Fedn Am. Socs exp. Biol. 22, 538.Google Scholar
Tarassuk, N. P. & Frankel, E. N. (1957). J. Dairy Sci. 40, 418.Google Scholar
Waugh, D. F. & Noble, R. W. Jr (1965). J. Am. chem. Soc. 87, 2246.CrossRefGoogle Scholar
Yaguchi, M. & Tarassuk, N. P. (1967). J. Dairy Sci. 50, 1985.Google Scholar
Yaguchi, M., Tarassuk, N. P. & Abe, N. (1964). J. Dairy Sci. 47, 1167.Google Scholar