Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-24T18:23:39.009Z Has data issue: false hasContentIssue false

Antibacterial effect of the lactoperoxidase system on psychrotrophic bacteria in milk

Published online by Cambridge University Press:  01 June 2009

L. Björck
Affiliation:
Department of Animal Husbandry, Swedish University of Agricultural Sciences, S-750 07 Uppsala, Sweden

Summary

Activation of the antibacterial lactoperoxidase system in milk, i.e. increasing the thiocyanate concentration to 0·25 mM and adding an equimolar amount of H2O2, results in a substantial reduction of the bacterial flora and prevents the multiplication of psychrotrophic bacteria for up to 5 d. This treatment has no effect on the physico-chemical properties of milk and does not lead to the accumulation of resistant bacteria. The practical application of the lactoperoxidase system in prolonging the storage period of raw milk at low temperatures is discussed.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1978

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aule, O. (1961). Svenska Mejeritidning 53, 343.Google Scholar
Björck, L. & Rosén, C.-G. (1976). Biotechnology and Bioengineering 18, 1463.CrossRefGoogle Scholar
Björck, L., Rosén, C.-G., Marshall, V. & Reiter, B. (1975). Applied Microbiology 30, 199.Google Scholar
Boulangé, M. (1959). Comptes Rendus des Séances de la Société de Biologie 153, 2019.Google Scholar
Hadland, G., Steinar, B. & Solberg, B. (1965). Report from the Dairy Research Institute, Vollebekk, Norway 120.Google Scholar
Hogg, D.McC. & Jago, G. R. (1970). Biochemical Journal 117, 779.Google Scholar
Law, B. A., Andrews, A. T. & Sharpe, M. E. (1977). Journal of Dairy Research 44, 145.Google Scholar
Lawrence, A. J. (1970). 18th International Dairy Congress, Sydney E, 99.Google Scholar
Lindqvist, B., Roos, T. & Fujita, H. (1975). Milchwissenschaft 30, 12.Google Scholar
Lück, H. (1962). World Health Organization Monograph Series no. 48, p. 423.Google Scholar
Miles, A. A. & Misra, S. S. (1938). Journal of Hygiene 38, 732.Google Scholar
Oram, J. D. & Reiter, B. (1966). Biochemical Journal 100, 373.Google Scholar
Pickering, A., Oram, J. D. & Reiter, B. (1962). Journal of Dairy Research 29, 151.Google Scholar
Polis, B. D. & Shmukler, H. W. (1953). Journal of Biological Chemistry 201, 475.CrossRefGoogle Scholar
Reiter, B., Marshall, V. M. E., Björck, L. & Rosén, C.-G. (1976). Infection and Immunity 13, 800.CrossRefGoogle Scholar
Reiter, B., Pickering, A., Oram, J. D. & Pope, G. S. (1963). Journal of General Microbiology 33, xii.Google Scholar
Rosén, C.-G. & Björck, L. (1975). Swedish Patent no. 375224.Google Scholar
Speck, M. L. & Adams, D. M. (1976). Journal of Dairy Science 59, 786.Google Scholar
Thomas, S. B. & Thomas, B. F. (1973 a). Dairy Industries 38, 11.Google Scholar
Thomas, S. B. & Thomas, B. F. (1973 b). Dairy Industries 38, 61.Google Scholar
Witter, L. D. (1961). Journal of Dairy Science 44, 983.CrossRefGoogle Scholar