Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-05T02:46:02.006Z Has data issue: false hasContentIssue false

Analysis of microsatellite markers in a Cuban water buffalo breed

Published online by Cambridge University Press:  23 August 2017

Odalys Uffo*
Affiliation:
Laboratorio de Genética Molecular, Centro Nacional de Sanidad Agropecuaria, Apartado 10, PO 32700, San José de las Lajas, Mayabeque, Cuba
Nadia Martínez
Affiliation:
Laboratorio de Genética Molecular, Centro Nacional de Sanidad Agropecuaria, Apartado 10, PO 32700, San José de las Lajas, Mayabeque, Cuba
Atzel Acosta
Affiliation:
Laboratorio de Genética Molecular, Centro Nacional de Sanidad Agropecuaria, Apartado 10, PO 32700, San José de las Lajas, Mayabeque, Cuba
Arianne Sanz
Affiliation:
LAGENBIO, Facultad de Veterinaria, IA2, Universidad de Zaragoza, Miguel Servet 177, 50013, Zaragoza, España
Inmaculada Martín-Burriel
Affiliation:
LAGENBIO, Facultad de Veterinaria, IA2, Universidad de Zaragoza, Miguel Servet 177, 50013, Zaragoza, España
Rosario Osta
Affiliation:
LAGENBIO, Facultad de Veterinaria, IA2, Universidad de Zaragoza, Miguel Servet 177, 50013, Zaragoza, España
Clementina Rodellar
Affiliation:
LAGENBIO, Facultad de Veterinaria, IA2, Universidad de Zaragoza, Miguel Servet 177, 50013, Zaragoza, España
Pilar Zaragoza
Affiliation:
LAGENBIO, Facultad de Veterinaria, IA2, Universidad de Zaragoza, Miguel Servet 177, 50013, Zaragoza, España
*
*For correspondence; e-mail: [email protected]

Abstract

The aim of this Regional Research Communication was to validate a panel of 30 microsatellite markers recommended by FAO/ISAG for studies of biodiversity in cattle to improve the characterisation of Cuban buffalo populations. The water buffalo (Bubalus bubalis) is an economically important livestock species. Therefore, research focused on the study of the genetic relationships among water buffalo populations is useful to support conservation decisions and to design breeding schemes. Twenty-eight of the 30 tested regions were amplified, one of which (ETH10) turned out to be monomorphic. A total of 143 alleles were observed in the Cuban water buffalo population. The average number of alleles per locus was 5·04. The number of alleles per polymorphic locus ranged from two (INRA 63 and MM12) to nine (ETH185). The observed and expected heterozygosity ranged from 0·108 (HAUT24) to 0·851 (CSSM66) and 0·104 (MM12) to 0·829(INRA32), respectively. The polymorphic information content (PIC) ranged from 0·097 (MM12) to 0·806 (INRA32), and the overall value for these markers was 0·482. Within the population, inbreeding estimates (FIS) was positive in 14 of the 30 loci analysed. This study thus highlights the usefulness of heterologous bovine microsatellite markers to assess the genetic variability in Cuban water buffalo breeds. Furthermore, the results can be utilised for future breeding strategies and conservation.

Type
Research Article
Copyright
Copyright © Proprietors of Journal of Dairy Research 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abou-Bakr, S, Ibrahim, MAM, Hafez, YM, Attia, M, Abdel-Salam, SM & Mekkawy, W 2012 Genetic characteristics of Egyptian buffalo using DNA microsatellite markers. Egyptian Journal of Animal Production 49 121126 Google Scholar
Acosta, A, Uffo, O, Sanz, A, Obregón, D, Ronda, R, Osta, R, Martin-Burriel, I, Rodellar, C & Zaragoza, P 2014 Genetic characterization of the Cuban water buffalo population using microsatellite DNA markers. Buffalo Bulletin 33 101106 Google Scholar
Attia, M, Abou-Bakr, S & Nigm, A 2014 Genetic differentiation and relationship among Egyptian Nile Delta located buffalo using microsatellite markers. Egyptian Journal of Animal Production 51 7177 Google Scholar
Borghese, A & Mazzi, M 2005 Buffalo population and strategies in the world. In Buffalo Production and Research, pp. 140 (Ed. Borghese, A). Rome: FAO, Monterotondo, Roma, ItaliaGoogle Scholar
FAO 2011 Molecular genetic characterization of animal genetic resources. FAO Animal Production and Health Guidelines. No. 9. RomeGoogle Scholar
Freeman, AR, Bradley, DG, Nagda, S, Gibson, JP & Hanotte, O 2005 Combination of multiple microsatellite data sets to investigate genetic diversity and admixture of domestic cattle. Animal Genetics 37 19 Google Scholar
Martínez, N, da Silva, EC, Mitat, A, Ponce, G, Benício da Silva, RC, Paes Barbosa, SB, Uffo, O & Gomes Filho, MA 2015 Genetic relationships between Cuban and Brazilian buffaloes (Bubalus bubalis) by microsatellite markers. Revista Salud Animal 37 152163 Google Scholar
Michelizzi, VN, Dodson, MV, Pan, Z, Amaral, MEJ, Michal, JJ, McLean, DJ, Womack, JE & Jiang, Z 2010 Water buffalo genome science comes of age. International Journal of Biology Science 6 333349 Google Scholar
Mitat, A 2009 Búfalos de agua en Cuba. Origen y evolución. Revista ACPA 3 4548 Google Scholar
Nagarajan, M, Kumar, N, Nishanth, G, Haribaskar, R, Paranthaman, K, Gupta, J, Mishra, M, Vaidhegi, R, Kumar, S, Rajan, AK & Kumar, S 2009 Microsatellites markers of water buffalo, Bubalus bubalis – development, characterization and linkage disequilibrium studies. BMC Genetics 10 68 Google Scholar
Santana, ML, Aspilcueta-Borquis, RR, Bignardi, AB, Albuquerque, LG & Tonhati, H 2011 Population structure and effects of inbreeding on milk yield and quality of Murrah buffaloes. Journal of Dairy Science 94 52045211 CrossRefGoogle ScholarPubMed
Shokrollahi, B, Amirinia, C, Djadid, ND, Amirmozaffari, N & Ali Kamali, M 2009 Development of polymorphic microsatellite loci for Iranian river buffalo (Bubalus bubalis). African Journal of Biotechnology 8 67506755 Google Scholar
Vieira, JN, Teixeira, SC, Kuabara, MY & Andrade de Oliveira, DA 2011 DNA microsatellites for genetic identification in Brazilian Murrah water buffaloes. Acta Veterinaria Brasilica 5 364367 Google Scholar
Supplementary material: PDF

Uffo et al supplementary material

Uffo et al supplementary material

Download Uffo et al supplementary material(PDF)
PDF 354.6 KB