Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-23T21:26:34.175Z Has data issue: false hasContentIssue false

Relationship between temperature and sterilizing efficiency of heat treatments of equal duration. Experimental testing with suspensions of spores in milk heated in an ultra-high-temperature sterilizer

Published online by Cambridge University Press:  01 June 2009

J. Hermier
Affiliation:
Laboratoire de Biochimie Microbienne, Institut National de la Recherche Agronomique, 78350 Jouy-en-Josas, France
P. Begue
Affiliation:
Laboratoire de Biochimie Microbienne, Institut National de la Recherche Agronomique, 78350 Jouy-en-Josas, France
O. Cerf
Affiliation:
Laboratoire de Biochimie Microbienne, Institut National de la Recherche Agronomique, 78350 Jouy-en-Josas, France

Summary

A relationship between temperature and sterilizing efficiency of heat treatment at constant time is described and checked experimentally using spores of Bacillus coagulans 604 in a pilot ultra-high-temperature plant. The relation is:

where N0 and N are initial and final concentrations of spores, T the temperature (°C), z the temperature coefficient (°C, z=10/logQ10) and A a dimensionless constant. A special effect of the injection of spores into live steam is observed. The sterilizing efficiency curve can be used in determining the heating temperature for a desired sterilizing efficiency and in predicting the influence of temperature fluctuation on sterilizing efficiency.

Type
Research Article
Copyright
Copyright © Proprietors of Journal of Dairy Research 1975

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ball, C. O. & Olson, F. C. W. (1957). Sterilization in food technology. New York: McGraw-Hill.Google Scholar
Bateson, R. N. (1971). Chemical Engineering Progress, Symposium Series 67, 44.Google Scholar
Burton, H. (1958). Journal of Dairy Research 25, 324.CrossRefGoogle Scholar
Burton, H. (1970). Journal of Dairy Research 37, 227.CrossRefGoogle Scholar
Burton, H. & Cocks, A. M. (1969). Journal of Dairy Research 36, 251.CrossRefGoogle Scholar
Burton, H., Franklin, J. G., Williams, D. J., Chapman, H. R., Harrison, A. J. W. & Clegg, L. F. L. (1959). Journal of Dairy Research 26, 221.CrossRefGoogle Scholar
Busta, F. F. (1967). Applied Microbiology 15, 640.CrossRefGoogle Scholar
Cerf, O. & Hermier, J. (1973). Lait 53, 23.CrossRefGoogle Scholar
Cheftel, H. & Thomas, G. (1963). Principes et méthodes pour l'établissement des barèmes de stérilisation des conserves alimentaires. Paris: Gauthier Villars.Google Scholar
Chen, A. C.-Y. & Zahradnik, J. W. (1967). Transactions of the ASAE 10, 508.Google Scholar
Cook, A. M. & Gilbert, R. J. (1968). Journal of Food Technology 3, 295.CrossRefGoogle Scholar
Franklin, J. G., Underwood, H. M., Perkin, A. G. & Burton, H. (1970). Journal of Dairy Research 37, 219.CrossRefGoogle Scholar
Hsu, D. S. (1970). Ultra-high-temperature (U.H.T.) processing and aseptic packaging (A.P.) of dairy products. New York: Damana Tech. Inc.Google Scholar
Miller, I. & Kandler, O. (1967).Google Scholar
Perkin, A. G. (1974). Journal of Dairy Research 41, 55.CrossRefGoogle Scholar
Pflug, I. J. & Schmidt, C. F. (1968). In Disinfection, sterilization, and preservation p. 63. (Eds: Lawrence, C. A. and Block, S. S.). Philadelphia: Lea & Febigen.Google Scholar
Soares de Melo, R., Cerf, O. & Hermier, J. (1973). Lait 53, 413.CrossRefGoogle Scholar
Stumbo, C. R. (1973). Thermobacteriology in food processing, 2nd edn.New York: Academic Press.Google Scholar
Wang, D. I. C., Scharer, J. & Humphrey, A. E. (1964). Applied Microbiology 12, 451.CrossRefGoogle Scholar