Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-26T02:29:12.378Z Has data issue: false hasContentIssue false

Preparation and properties of β-casein from buffalo's milk

Published online by Cambridge University Press:  01 June 2009

M. H. Abd El-Salam
Affiliation:
Laboratory of Food Technology and Dairying, National Research Centre, Cairo, Egypt
Safinaz El-Shibiny
Affiliation:
Laboratory of Food Technology and Dairying, National Research Centre, Cairo, Egypt

Summary

β-Casein from individual buffalo's milk was found to be homogeneous by starch-gel electrophoresis. β-Casein was separated from buffalo's milk by the method of Warner (1944) and purified by DEAE-cellulose chromatography.

Buffalo β-casein possesses identical end-groups to those of cow β-casein; namely N-terminal arginine and assuming a single polypeptide chain a possible C-terminal sequence of Ile-Ile-Val. However, the amino-acid composition and the tryptic peptide patterns of the 2 proteins are not the same.

Type
Research Article
Copyright
Copyright © Proprietors of Journal of Dairy Research 1975

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abd El-Salam, M. H. & El-Shibiny, S. (1972). Journal of Dairy Research 39, 219.CrossRefGoogle Scholar
Annan, W. D. & Manson, W. (1969). Journal of Dairy Research 36, 259.CrossRefGoogle Scholar
Aschaffenburg, R., Sen, A. & Thompson, M. P. (1968). Comparative Biochemistry and Physiology 27, 621.CrossRefGoogle Scholar
Goodwin, T. W. & Morton, R. A. (1946). Biochemical Journal 40, 628.CrossRefGoogle Scholar
Kalan, E. B., Thompson, M. P., Greenberg, R. & Pepper, L. (1965). Journal of Dairy Science 48, 884.CrossRefGoogle Scholar
McKenzie, H. A. (Ed.) (1971). Milk Proteins, vol. 2. New York: Academic Press.Google Scholar
Manson, W. (1961). Archives of Biochemistry and Biophysics 95, 336.CrossRefGoogle Scholar
Moore, S. & Stein, W. H. (1954). Journal of Biological Chemistry 211, 907.CrossRefGoogle Scholar
Nagasawa, T., Kiyosawa, I., Kuwahara, K. & Ganguli, N. C. (1973). Journal of Dairy Science 56, 61.CrossRefGoogle Scholar
Peterson, R. F., Nauman, L. W. & Hamilton, D. F. (1966). Journal of Dairy Science 49, 601.CrossRefGoogle Scholar
Rose, D., Davies, D. T. & Yaguchi, M. (1969). Journal of Dairy Science 52, 8.CrossRefGoogle Scholar
Snell, F. D. & Snell, C. T. (1949). Colorimetric Methods of Analysis, 3rd edn, vol. 2. Princeton, N.J.: D. Van Nostrand & Co.Google Scholar
Spackman, D. H., Stein, W. H. & Moore, S. (1958). Analytical Chemistry 30, 1190.CrossRefGoogle Scholar
Thompson, M. P., Kalan, E. B. & Greenberg, R. (1967). Journal of Dairy Science 50, 767.CrossRefGoogle Scholar
Wake, R. G. & Baldwin, R. L. (1961). Biochimica et Biophysica Acta 47, 225.CrossRefGoogle Scholar
Warner, R. C. (1944). Journal of the American Chemical Society 66, 1725.CrossRefGoogle Scholar