Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T08:52:01.185Z Has data issue: false hasContentIssue false

The metabolism of [14C]bicarbonate by Streptococcus lactis: the fixation of [14C]bicarbonate by pyruvate carboxylase

Published online by Cambridge University Press:  01 June 2009

Alan J. Hillier
Affiliation:
Russell Grimwade School of Biochemistry, University of Melbourne, Parkville, Victoria 3052, Australia
G. Richard Jago
Affiliation:
Dairy Research Laboratory, Division of Food Research, CSIRO, Highett, Victoria 3190, Australia

Summary

The fixation of [14C]bicarbonate into aspartate by Streptococcus lactis C10 was achieved by the combined reactions of pyruvate carboxylase (E.C. 6.4.1.1) and glutamate-oxaloacetate transaminase (E.C. 2.6.1.1). The pyruvate carboxylase from Str. lactis C10, which was most active at pH 8·0, was activated by the divalent metal ions Mn2+, Mg2+ and Co2+, and inhibited by sulphydryl reagents. The enzyme was inhibited non-competitively by aspartic acid and competitively by oxaloacetate.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1978

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Atkinson, D. E. & Walton, G. M. (1967). Journal of Biological Chemistry 242, 3239.CrossRefGoogle Scholar
Hartman, R. E. (1970). Journal of Bacteriology 102, 341.CrossRefGoogle Scholar
Hillier, A. J. & Jago, G. R. (1978 a). Journal of Dairy Research 45, 231.CrossRefGoogle Scholar
Hiller, A. J. & Jago, G. R. (1978 b). Journal of Dairy Research 45, 423.CrossRefGoogle Scholar
Hillier, A. J., Rice, G. H. & Jago, G. R. (1978). Journal of Dairy Research 45, 241.CrossRefGoogle Scholar
Keech, D. B. & Utter, M. F. (1963). Journal of Biological Chemistry 238, 2609.CrossRefGoogle Scholar
Krebs, H. A. & Eggleston, L. V. (1945). Biochemical Journal 39, 408.CrossRefGoogle Scholar
Lachica, V. F. & Hartman, P. A. (1969 a). Canadian Journal of Microbiology 15, 57.CrossRefGoogle Scholar
Lachica, V. F. & Hartman, P. A. (1969 b). Canadian Journal of Microbiology 15, 61.CrossRefGoogle Scholar
McClure, W. R., Lardy, H. A. & Kneifel, H. P. (1971). Journal of Biological Chemistry 246, 3569.CrossRefGoogle Scholar
Sachs, D. H. & Painter, E. (1972). Science, New York 175, 781.CrossRefGoogle Scholar
Scrutton, M. C., Olmsted, M. R. & Utter, M. F. (1969). Methods in Enzymology 13, 235.CrossRefGoogle Scholar
Scrutton, M. C. & Fung, C. H. (1972). Archives of Biochemistry and Biophysics 150, 636.CrossRefGoogle Scholar
Scrutton, M. C. & Young, M. R. (1972). In The Enzymes, 3rd edn, vol. 6, p. 1. (Ed. Boyer, P. D..) New York: Academic Press.Google Scholar
Seubert, W. & Weicker, H. (1969). Methods in Enzymology 13, 258.CrossRefGoogle Scholar
Wilkinson, G. N. (1961). Biochemical Journal 80, 324.CrossRefGoogle Scholar
Young, M. R., Tolbert, B. & Utter, M. F. (1969). Methods in Enzymology 13, 250.CrossRefGoogle Scholar