Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-01T18:35:49.102Z Has data issue: false hasContentIssue false

Exopolysaccharide from Lactobacillus fermentum Lf2 and its functional characterization as a yogurt additive

Published online by Cambridge University Press:  15 November 2016

Elisa C Ale
Affiliation:
Facultad de Ingeniería Química (UNL), Instituto de Lactología Industrial (UNL – CONICET), Santiago del Estero 2829, 3000 Santa Fe, Argentina
Marcos J Perezlindo
Affiliation:
Facultad de Ingeniería Química (UNL), Instituto de Lactología Industrial (UNL – CONICET), Santiago del Estero 2829, 3000 Santa Fe, Argentina
Patricia Burns
Affiliation:
Facultad de Ingeniería Química (UNL), Instituto de Lactología Industrial (UNL – CONICET), Santiago del Estero 2829, 3000 Santa Fe, Argentina
Eduardo Tabacman
Affiliation:
Somalogic, Inc., 2945 Wilderness Pl., Boulder, CO 80301, USA
Jorge A Reinheimer
Affiliation:
Facultad de Ingeniería Química (UNL), Instituto de Lactología Industrial (UNL – CONICET), Santiago del Estero 2829, 3000 Santa Fe, Argentina
Ana G Binetti*
Affiliation:
Facultad de Ingeniería Química (UNL), Instituto de Lactología Industrial (UNL – CONICET), Santiago del Estero 2829, 3000 Santa Fe, Argentina
*
*For correspondence; e-mail: [email protected]

Abstract

Lactobacillus fermentum Lf2 is a strain which is able to produce high levels (approximately 1 g/l) of crude exopolysaccharide (EPS) when it is grown in optimised conditions. The aim of this work was to characterize the functional aspects of this EPS extract, focusing on its application as a dairy food additive. Our findings are consistent with an EPS extract that acts as moderate immunomodulator, modifying s-IgA and IL-6 levels in the small intestine when added to yogurt and milk, respectively. Furthermore, this EPS extract, in a dose feasible to use as a food additive, provides protection against Salmonella infection in a murine model, thus representing a mode of action to elicit positive health benefits. Besides, it contributes to the rheological characteristics of yogurt, and could function as a food additive with both technological and functional roles, making possible the production of a new functional yogurt with improved texture.

Type
Research Article
Copyright
Copyright © Proprietors of Journal of Dairy Research 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Becker, A, Katzen, F, Puhler, A & Ielpi, L 1998 Xanthan gum biosynthesis and application: a biochemical/genetic perspective. Applied Microbiology and Biotechnology 50 145152 CrossRefGoogle ScholarPubMed
Bradford, M 1976 A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72 248254 CrossRefGoogle ScholarPubMed
Brandtzaeg, P, Bjerke, K, Kett, K, Kvale, D, Rognum, TO, Scott, H, Sollid, LM & Valnes, K 1987 Production and secretion of immunoglobulins in the gastrointestinal tract. Annals of Allergy 59 2139 Google ScholarPubMed
Calhoun, P 2015 Exact: Unconditional Exact Test. R package version 1.6. http://CRAN.R-project.org/package=Exact.Google Scholar
Cerning, J 1995 Production of exopolysaccharides by lactic acid bacteria and dairy propionibacteria. Lait 75 463472 CrossRefGoogle Scholar
Del Piano, M, Balzarini, M, Carmagnola, S, Pagliarulo, M, Tari, R, Nicola, S, Deidda, F & Pane, M 2014 Assessment of the capability of a gelling complex made of tara gum and the exopolysaccharides produced by the microorganism Streptococcus thermophilus ST10 to prospectively restore the gut physiological barrier: a pilot study. Journal of Clinical Gastroenterology 48 S56S61 CrossRefGoogle ScholarPubMed
De Vuyst, L, Zamfir, M, Mozzi, F, Adriany, T, Marshall, V, Degeest, B & Vaningelgem, F 2003 Exopolysaccharide-producing Streptococcus thermophilus strains as functional starter cultures in the production of fermented milks. International Dairy Journal 13 707717 CrossRefGoogle Scholar
Edwards, U, Rogall, T, Blöcker, H, Emde, M & Böttger, EC 1989 Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Research 17 78437853 CrossRefGoogle ScholarPubMed
Fanning, S, Hall, LJ, Cronin, M, Zomer, A, MacSharry, J, Goulding, D, O'Connell Motherway, M, Shanahan, F, Nally, K, Dougan, G & van Sinderen, D 2012 Bifidobacterial surface-exopolysaccharide facilitates commensal-host interaction through immune modulation and pathogen protection. Proceedings of the National Academy of Sciences 109 21082113 CrossRefGoogle ScholarPubMed
Folkenberg, DM, Dejmek, P, Skriver, A, Guldager, HS & Ipsen, R 2006 Sensory and rheological screening of exopolysaccharide producing strains of bacterial yoghurt cultures. International Dairy Journal 16 111118 CrossRefGoogle Scholar
Fukuda, K, Shi, T, Nagami, K, Leo, F, Nakamura, T, Yasuda, K, Senda, A, Motoshima, H & Urashima, T 2010 Effects of carbohydrate source on physicochemical properties of the exopolysaccharide produced by Lactobacillus fermentum TDS030603 in a chemically defined medium. Carbohydrate Polymers 79 10401045 CrossRefGoogle Scholar
Gill, HS 1998 Stimulation of the immune system by lactic cultures. International Dairy Journal 8 535544 CrossRefGoogle Scholar
Hidalgo-Cantabrana, C, López, P, Gueimonde, M, de los Reyes-Gavilán, CG, Suárez, A, Margolles, A & Ruas-Madiedo, P 2012 Immune modulation capability of exopolysaccharides synthesised by lactic acid bacteria and Bifidobacteria. Probiotics and Antimicrobial Proteins 4 227237 CrossRefGoogle ScholarPubMed
Hidalgo-Cantabrana, C, Nikolic, M, López, P, Suárez, A, Miljkovic, M, Kojic, M, Margolles, A, Golic, N & Ruas-Madiedo, P 2014 Exopolysaccharide-producing Bifidobacterium animalis subsp. lactis strains and their polymers elicit different responses on immune cells from blood and gut associated lymphoid tissue. Anaerobe 26 2430 CrossRefGoogle ScholarPubMed
Kimmel, SA & Roberts, RF 1998 Development of a growth medium suitable for exopolysaccharide production by Lactobacillus delbrueckii ssp. bulgaricus RR. International Journal of Food Microbiology 40 8792 CrossRefGoogle ScholarPubMed
López, P, Monteserin, DC, Gueimonde, M, de los Reyes-Gavilán, CG, Margolles, A, Suarez, A & Ruas-Madiedo, P 2012 Exopolysaccharide-producing Bifidobacterium strains elicit different in vitro responses upon interaction with human cells. Food Research International 46 99107 CrossRefGoogle Scholar
Mantis, NJ & Forbes, SJ 2010 Secretory IgA: arresting microbial pathogens at epithelial borders. Immunological Investigations 39 383406 CrossRefGoogle ScholarPubMed
Maruo, T, Gotoh, Y, Nishimura, H, Ohashi, S, Toda, T & Takahashi, K 2012 Oral administration of milk fermented with Lactococcus lactis subsp. cremoris FC protects mice against influenza virus infection. Letters in Applied Microbiology 55 135140 CrossRefGoogle ScholarPubMed
Nagai, T, Makino, S, Ikegami, S, Itoh, H & Yamada, H 2011 Effects of oral administration of yogurt fermented with Lactobacillus delbrueckii ssp. bulgaricus OLL1073R-1 and its exopolysaccharides against influenza virus infection in mice. International Immunopharmacology 11 22462250 CrossRefGoogle ScholarPubMed
R Core Team 2015 R: a Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. http://www.R-project.org/.Google Scholar
Rodríguez, C, Medici, M, Rodríguez, AV, Mozzi, F & de Valdez, GF 2009 Prevention of chronic gastritis by fermented milks made with exopolysaccharide-producing Streptococcus thermophilus strains. Journal of Dairy Science 92 24232434 CrossRefGoogle ScholarPubMed
Ruas-Madiedo, P, Hugenholtz, J & Zoon, P 2002a An overview of the functionality of exopolysaccharides produced by lactic acid bacteria. International Dairy Journal 12 163171 CrossRefGoogle Scholar
Ruas-Madiedo, P, Tuinier, R, Kanning, M & Zoon, P 2002b Role of exopolysaccharides produced by Lactococcus lactis subsp. cremoris on the viscosity of fermented milks. International Dairy Journal 12 689695 CrossRefGoogle Scholar
Ryan, PM, Ross, RP, Fitzgerald, GF, Caplice, NM & Stanton, C 2015 Sugar-coated: exopolysaccharide producing lactic acid bacteria for food and human health applications. Food and Function 6 679693 CrossRefGoogle ScholarPubMed
Salazar, N, Gueimonde, M, Hernandez-Barranco, AM, Ruas-Madiedo, P & de los Reyes-Gavilan, CG 2008 Exopolysaccharides produced by intestinal Bifidobacterium strains act as fermentable substrates for human intestinal bacteria. Applied and Environmental Microbiology 74 47374745 CrossRefGoogle ScholarPubMed
Salazar, N, Binetti, A, Gueimonde, M, Alonso, A, Garrido, P, Del Rey, CG, González, C, Ruas-Madiedo, P & de los Reyes- Gavilán, CG 2011 Safety and intestinal microbiota modulation by the exopolysaccharide-producing strains Bifidobacterium animalis IPLA R1 and Bifidobacterium longum IPLA E44 orally administered to Wistar rats. International Journal of Food Microbiology 144 342351 CrossRefGoogle ScholarPubMed
Salazar, N, López, P, Garrido, P, Moran, J, Cabello, E, Gueimonde, M, Suárez, A, González, C, de los Reyes-Gavilán, CG & Ruas-Madiedo, P 2014 Immune modulating capability of two exopolysaccharide-producing Bifidobacterium strains in a Wistar rat model. BioMed Research International ID 106290. http://dx.doi.org/10.1155/2014/106290.CrossRefGoogle Scholar
Savadogo, A, Ouattara, CA, Savadogo, PW, Barro, N, Ouattara, AS & Traoré, AS 2004 Identification of exopolysaccharides-producing lactic acid bacteria from Burkina Faso fermented milk samples. African Journal of Biotechnology 3 189194 Google Scholar
Simon, O, Vahjen, W & Scharek, L 2003 Microorganisms as feed additives – probiotics. Proceedings of the 9th International Symposium on Digestive Physiology in Pigs 1 295318 Google Scholar
Therneau, T 2015 A Package for Survival Analysis in S_. version 2.38. http://CRAN.R-project.org/package=survival.Google Scholar
Vinderola, G, Perdigón, G, Duarte, J, Farnworth, E & Matar, C 2006 Effects of the oral administration of the exopolysaccharide produced by Lactobacillus kefiranofaciens on the gut mucosal immunity. Cytokine 36 254260 CrossRefGoogle ScholarPubMed
Wang, K, Li, W, Rui, X, Chen, X, Jiang, M & Dong, M 2014 Characterization of a novel exopolysaccharide with antitumor activity from Lactobacillus plantarum 70810. International Journal of Biological Macromolecules 63 133139 CrossRefGoogle ScholarPubMed
Watson, KG & Holden, DW 2010 Dynamics of growth and dissemination of Salmonella in vivo. Cellular Microbiology 12 13891397 CrossRefGoogle ScholarPubMed
Willers, J, Weiler, E & Kolb, C 1995 Stimulation of the same B-cell population by thymus-independent dextran and thymus-dependent oligosaccharide-carrier. Scandinavian Journal of Immunology 42 345352 CrossRefGoogle ScholarPubMed
Zacarías, MF, Reinheimer, J, Forzani, L, Grangette, C & Vinderola, G 2014 Mortality and translocation assay to study the protective capacity of Bifidobacterium lactis INL1 against Salmonella Typhimurium infection in mice. Beneficial Microbes 5 427436 CrossRefGoogle Scholar