Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-25T17:23:24.519Z Has data issue: false hasContentIssue false

Biodiversity of Lactobacillus helveticus bacteriophages isolated from cheese whey starters

Published online by Cambridge University Press:  01 April 2015

Miriam Zago*
Affiliation:
Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca per le Produzioni Foraggere e Lattiero-Casearie (CRA-FLC), 26900 Lodi, Italy
Barbara Bonvini
Affiliation:
Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca per le Produzioni Foraggere e Lattiero-Casearie (CRA-FLC), 26900 Lodi, Italy
Lia Rossetti
Affiliation:
Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca per le Produzioni Foraggere e Lattiero-Casearie (CRA-FLC), 26900 Lodi, Italy
Aurora Meucci
Affiliation:
Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca per le Produzioni Foraggere e Lattiero-Casearie (CRA-FLC), 26900 Lodi, Italy
Giorgio Giraffa
Affiliation:
Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca per le Produzioni Foraggere e Lattiero-Casearie (CRA-FLC), 26900 Lodi, Italy
Domenico Carminati
Affiliation:
Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca per le Produzioni Foraggere e Lattiero-Casearie (CRA-FLC), 26900 Lodi, Italy
*
*For correspondence; e-mail: [email protected]

Abstract

Twenty-one Lactobacillus helveticus bacteriophages, 18 isolated from different cheese whey starters and three from CNRZ collection, were phenotypically and genetically characterised. A biodiversity between phages was evidenced both by host range and molecular (RAPD-PCR) typing. A more detailed characterisation of six phages showed similar structural protein profiles and a relevant genetic biodiversity, as shown by restriction enzyme analysis of total DNA. Latent period, burst time and burst size data evidenced that phages were active and virulent. Overall, data highlighted the biodiversity of Lb. helveticus phages isolated from cheese whey starters, which were confirmed to be one of the most common phage contamination source in dairy factories. More research is required to further unravel the ecological role of Lb. helveticus phages and to evaluate their impact on the dairy fermentation processes where whey starter cultures are used.

Type
Research Article
Copyright
Copyright © Proprietors of Journal of Dairy Research 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abedon, ST & Yin, J 2009 Bacteriophage plaques: theory and analysis. In Bacteriophages: Methods and Protocols, Vol. 1: Isolation, Characterization, and Interactions, pp. 161174 (Eds Clokie, MRJ & Kropinski, AM). New York: Humana Press, Springer Science+Business MediaGoogle Scholar
Adams, MH 1959 Bacteriophages. New York: Interscience Publishers, IncGoogle Scholar
Baranyi, J & Roberts, TA 1994 A dynamic approach to predicting bacterial growth in food. International Journal of Food Microbiology 23 277294Google Scholar
Beresford, TP, Fitzsimons, NA, Brennan, NL & Cogan, T 2001 Recent advances in cheese microbiology. International Dairy Journal 11 259274CrossRefGoogle Scholar
Carminati, D, Zago, M & Giraffa, G 2011 Ecological aspects of phage contamination in natural whey and milk starters. In Bacteriophages in Dairy Processing, pp. 7997 (Eds Quiberoni, AL & Reinheimer, JA). New York: Nova Science Publishers, IncGoogle Scholar
De Antoni, G, Zago, M, Vasek, O, Giraffa, G, Carminati, D, Briggiler, M, Reinheimer, J & Suarez, V 2010 Lactobacillus plantarum bacteriophages isolated from Kefir grains: phenotypic and molecular characterization. Journal of Dairy Research 77 712Google Scholar
Gutiérrez, D, Martìn-Platero, AM, Rodrìguez, A, Martinez-Bueno, M, Garcia, P & Martinez, B 2011 Typing of bacteriophages by randomly amplified polymorphic DNA (RAPD)-PCR to asses genetic diversity. FEMS Microbiology Letters 322 9097CrossRefGoogle Scholar
Huey, B & Hall, J 1989 Hypervariable DNA fingerprinting in E. coli. Minisatellite probe from bacteriophage M13. Journal of Bacteriology 171 25282532Google Scholar
Kilic, AO, Pavlova, SI, Ma, W-G & Tao, L 1996 Analysis of Lactobacillus phages and bacteriocins in American dairy products and characterization of a phage isolated from yogurt. Applied and Environmental Microbiology 62 21112116Google Scholar
Lazzi, C, Rossetti, L, Zago, M, Neviani, E & Giraffa, G 2004 Evaluation of bacterial communities belonging to natural whey starters for Grana Padano cheese by length-heterogeineity-PCR. Journal of Applied Microbiology 96 481490Google Scholar
Le Marrec, C, Van Sinderen, D, Walsh, L, Stanley, E, Vlegels, E, Moineau, S, Heinze, P, Fitzgerald, G & Fayard, B 1997 Two groups of bacteriophages infecting Streptococcus thermophilus can be distinguished on the basis of mode of packaging and genetic determinants for major structural proteins. Applied and Environmental Microbiology 63 32463253CrossRefGoogle ScholarPubMed
Madera, C, Monjardin, C & Suarez, JE 2004 Milk contamination and resistance to processing conditions determine the fate of Lactococcus lactis bacteriophages in dairies. Applied and Environmental Microbiology 70 73657371CrossRefGoogle ScholarPubMed
Moineau, S & Lévesque, C 2005 Control of bacteriophages in industrial fermentations. In Bacteriophages: Biology and Applications, pp. 285296 (Eds Kutter, E & Sulakvelidze, A). Boca Raton, USA: CRC PressGoogle Scholar
Quiberoni, A, Suarez, VB & Reinheimer, JA 1999 Inactivation of Lactobacillus helveticus bacteriophages by thermal and chemical treatments. Journal of Food Protection 62 894898Google Scholar
Rossetti, L & Giraffa, G 2005 Rapid identification of dairy lactic acid bacteria by M13-generated, RAPD-PCR fingerprint databases. Journal of Microbiological Methods 63 135144Google Scholar
Séchaud, L, Rousseau, M, Fayard, B, Callegari, ML, Quénee, P & Accolas, JP 1992 Comparative study of 35 Lactobacillus helveticus: morphology and host range. Applied and Environmental Microbiology 58 10111018CrossRefGoogle ScholarPubMed
Sozzi, T & Maret, R 1975 Isolation and characteristics of Streptococcus thermophilus and Lactobacillus helveticus phages from Emmental starters. Lait 55 269288Google Scholar
Zago, M, Comaschi, L, Neviani, E & Carminati, D 2005 Investigation on the presence of bacteriophages in natural whey starters used for the production of Italian long-ripened cheeses. Milchwissenschaft 60 171174Google Scholar
Zago, M, De Lorentiis, A, Carminati, D, Comaschi, L & Giraffa, G 2006 Detection and identification of Lactobacillus delbrueckii subsp. lactis bacteriophages by PCR. Journal of Dairy Research 73 146153Google Scholar
Zago, M, Rossetti, L, Bonvini, B, Remagni, MC, Perrone, A, Fornasari, ME, Carminati, D & Giraffa, G 2008a Il sieroinnesto di Grana Padano: una comunità di batteri e batteriofagi. Scienza e Tecnica Lattiero-Casearia 59 277286Google Scholar
Zago, M, Rossetti, L, Reinheimer, J, Carminati, D & Giraffa, G 2008b Detection and identification of Lactobacillus helveticus bacteriophages by PCR. Journal of Dairy Research 75 196201Google Scholar
Zago, M, Scaltriti, E, Fornasari, ME, Rivetti, C, Grolli, S, Giraffa, G, Ramoni, R & Carminati, D 2012 Epifluorescence and atomic force microscopy: two innovative applications for studying phage-host interactions in Lactobacillus helveticus. Journal of Microbiological Methods 88 4146Google Scholar
Zago, M, Scaltriti, E, Rossetti, L, Guffanti, A, Armiento, A, Fornasari, ME, Grolli, S, Carminati, D, Brini, E, Pavan, P, Felsani, A, D'Urzo, A, Moles, A, Claude, JB, Grandori, R, Ramoni, R & Giraffa, G 2013 Characterization of the genome of the dairy Lactobacillus helveticus bacteriophage Ф AQ113. Applied and Environmental Microbiology 79 47124718Google Scholar