Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-25T16:32:37.868Z Has data issue: false hasContentIssue false

Attempts to relate the selenium content of heat-treated milks with their nutritive properties

Published online by Cambridge University Press:  01 June 2009

Kathleen M. Henry
Affiliation:
The National Institute for Research in Dairying, Shinfield, Reading

Summary

Fink (1954) and Fink & Schlie (1955a) fed rats on a diet intentionally marginal in vitamin E and the sulphur-amino acids, in which dried milk supplied the protein (10%). They were able to relate the development of fatal liver necrosis in rats to heat damage of dried milks. Using their method, no liver necrosis developed in our rats with 2 spray-dried skim-milks, evaporated milk and milk subjected to ultrahigh temperature treatment, with or without subsequent in-bottle sterilization. With a roller-dried skim-milk sent to us from Germany by Fink and found by him to be of ‘middle degree necrogenity’, no liver necrosis occurred in hooded or albino rats bred in our laboratory, but the lesion developed in albino rats from an outside source. It was found that this milk had a lower selenium content than 2 British spray-dried milks. With rats given a necrogenic diet, differences were observed between and within strains in their susceptibility to liver necrosis and in their ability to utilize dietary selenium.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1964

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Association of Official Agricultural Chemists (1960). Official Methods of Analysis, 9th edn., p. 330. Washington, D.C.: Association of Official Agricultural Chemists.Google Scholar
Bunyan, J., Green, J. & Diplock, A. T. (1963). Brit. J. Nutr. 17, 117.Google Scholar
Cheng, K. L. (1956). Analyt. Chem. 28, 1738.CrossRefGoogle Scholar
de Loureiro, A. (1931). Arch. Pat., Lisboa, 3, 72.Google Scholar
Fink, H. (1954). Hoppe-Seyl. Z. 298, 93.Google Scholar
Fink, H. (1957). Naturwissenschaften, 44, 284.CrossRefGoogle Scholar
Fink, H. (1960). Naturwissenschaften, 47, 499.Google Scholar
Fink, H. & Schlie, I. (1955 a). Naturwissenschaften, 42, 21.Google Scholar
Fink, H. & Schlie, I. (1955 b). Naturwissenschaften, 42, 446.CrossRefGoogle Scholar
Henry, K. M. & Kon, S. K. (1956). Brit. J. Nutr. 10, 39.CrossRefGoogle Scholar
Henry, K. M., Kon, S. K., Lea, C. H. & White, J. C. D. (19471948). J. Dairy Res. 15, 292.CrossRefGoogle Scholar
Henry, K. M., Kon, S. K. & Watson, M. B. (1937). Milk and Nutrition, part I, p. 37. Reading: National Institute for Research in Dairying.Google Scholar
Kon, S. K. (1958). Dairy Sci. Abstr. 20, 887.Google Scholar
McKinlay, H. (1951). J. Anim. Tech. Ass. 2, no. 2, p. 2.Google Scholar
Mitchell, H. H. (19231924). J. biol. Chem. 58, 873.CrossRefGoogle Scholar
Mitchell, H. H. & Carman, G. G. (1926). J. biol. Chem. 68, 183.CrossRefGoogle Scholar
Naftalin, J. M. (1951). J. Path. Bact. 63, 649.Google Scholar
Naftalin, J. M. (1954). Proc. Nutr. Soc. 13, 120.CrossRefGoogle Scholar
Schwarz, K. (1960). Nutr. Rev. 18, 193.Google Scholar
Schwarz, K. & Foltz, C. M. (1957). J. Amer. chem. Soc. 79, 3292.CrossRefGoogle Scholar
Shillam, K. W. G., Dawson, D. A. & Roy, J. H. B. (1960). Brit. J. Nutr. 14, 403.Google Scholar
Shillam, K. W. G. & Roy, J. H. B. (1963). Brit. J. Nutr. 17, 193.CrossRefGoogle Scholar
Shillam, K. W. G., Roy, J. H. B. & Ingram, P. L. (1962 a). Brit. J. Nutr. 16, 585.CrossRefGoogle Scholar
Shillam, K. W. G., Roy, J. H. B. & Ingram, P. L. (1962 b). Brit. J. Nutr. 16, 593.Google Scholar