Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T00:32:21.814Z Has data issue: false hasContentIssue false

714. The relation between the chemical composition of milk and the stability of the caseinate complex: III. Coagulation by rennet

Published online by Cambridge University Press:  01 June 2009

J. C. D. White
Affiliation:
The Hannah Dairy Institute, Kirkhill, Ayr
D. T. Davies
Affiliation:
The Hannah Dairy Institute, Kirkhill, Ayr

Extract

1. The variation in the time required for the coagulation of milk by rennet and the relationship between milk composition and renneting time were examined.

2. The renneting times of herd bulk milks varied over the relatively narrow range of 3·2–5·4 min., whereas the renneting times of milks from individual cows varied from 1·4 to 12·9 min. and two did not coagulate.

3. In general, milk quick to coagulate gave a firm curd (early lactation milk) and milk slow to coagulate gave a soft curd (late lactation and subclinical mastitis milk).

4. The renneting time of milk was related to the stage of lactation of the cow. In early lactation, renneting times were short and as lactation advanced there was a progressive increase in renneting time; the increase became more pronounced towards the end of lactation.

5. The property of milk most closely related to renneting time was acidity. As pH increased from 6·4 to 7·2, there was a curvilinear increase in renneting time from 1·5 to 13 min. Titratable acidity was related to renneting time in the opposite way to pH.

6. Although milk containing a relatively high concentration of ionized calcium coagulated quickly with rennet, the renneting time of milks containing average, or less than average, amounts of ionized calcium was not related to their content of this constituent.

7. Weak relationships between the concentrations of other milk constituents and renneting time could be attributed to the interrelations of the concentrations of these constituents and pH.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1958

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Alais, C., Mocquot, G., Nitschmann, H. & Zahler, P. (1953). Helv. chim. acta, 36, 1955.Google Scholar
(2)Mocquot, G., Alais, C., Nitschmann, H., Zahler, P. & Keller, W. (1953). Chimia, 7, 93. Cited in Dairy Sci. Abstr. 1954, 16, 317.Google Scholar
(3)Higgins, H. G. & Fraser, D. (1954). Aust. J. biol. Sci. 7, 85.Google Scholar
(4)Mattenheimer, H. & Nitschmann, H. (1955). Helv. chim. acta 38, 687.Google Scholar
(5)Nitschmann, H. & Keller, W. (1955). Helv. chim. acta. 38, 942.CrossRefGoogle Scholar
(6)Nitschmann, H. & Böhren, H. V. (1955). Helv. chim. acta, 38, 1953.Google Scholar
(7)Pyne, G. T. (1953). Chem. & Ind. 72, 302.Google Scholar
(8)Söhngen, N. L., Wieringa, K. T. & Pasveer, A. (1937). Rec. Trav. chim. Pays-Bas, 56, 280.CrossRefGoogle Scholar
(9)Hankinson, C. L. & Palmer, L. S. (1943). J. Dairy Sci. 26, 1043.CrossRefGoogle Scholar
(10)Berridge, N. J. (1942). Nature, Lond. 149, 194.Google Scholar
(11)Pyne, G. T. (1955). The chemistry of casein. Review article no. 40. Dairy Sci. Abstr. 17, 531.Google Scholar
(12)Pyne, G. T. (1948). Nature, Lond. 162, 925.Google Scholar
(13)Smith, A. G. & Bradley, H. C. (1935). Science, 82, 467.Google Scholar
(14)Holm, G. E., Webb, B. H. & Deysher, E. F. (1932). J. Dairy Sci. 15, 331.CrossRefGoogle Scholar
(15)Golding, J., Mackintosh, J. & Mattick, E. C. V. (1935). J. Dairy Res. 6, 6.Google Scholar
(16)Chevalier, R., Mocquot, G., Alais, C. & Bonnat, M. (1950). C.R. Soc. Biol., Paris, 231, 249. Cited in Dairy Sci. Abstr. 1951, 13, 205.Google Scholar
(17)Mocquot, G., Alais, C. & Chevalier, R. (1954). Ann. Inst. Nat. Rech. agron., Paris, Ser. E. (Ann. Tech. agric.), 3, 1. Cited in Dairy Sci. Abstr. 1955, 17, 518.Google Scholar
(18)Ling, E. R. (1937). J. Dairy Res. 8, 173.CrossRefGoogle Scholar
(19)Parisi, P. (1933). G. Chim. industr. 15, 545. Cited in Chem. Abstr. 1934, 28, 2072.Google Scholar
(20)McDowall, F. H., Dolby, R. M. & McDowell, A. K. R. (1937). J. Dairy Res. 8, 31.CrossRefGoogle Scholar
(21)Vilegzhanin, M. Z. (1942). Trud. vologod. sel-khoz. Inst. 5, 275. Cited in Dairy Sci. Abstr. 1945–46, 7, 139.Google Scholar
(22)Waarden, M. van der (1948). Versl. algem. ned. Zuivelb., 's Grav. 1945–47, 7. Cited in Dairy Sci. Abstr. 1951, 13, 80.Google Scholar
(23)Wakui, K. & Kawachi, S. (1954). J. pharm. Soc. Japan, 74, 304. Cited in Chem. Abstr. 1954, 48, 7216.Google Scholar
(24)Sasaki, R., Tsugo, T. & Nakai, S. (1955). J. agric. chem. Soc. Japan, 29, 292. Cited in Dairy Sci. Abstr. 1956, 18, 687.Google Scholar
(25)Lyman, J. F., Browne, E. H. & Otting, H. E. (1933). Industr. Engng Chem. (Anal.), 25, 1297.Google Scholar
(26)Berridge, N. J. (1951). Milk coagulation. In The Enzymes, vol. 1, part 2, p. 1082, ed. Sumner, J. B. & Myrbäck, K.New York: Academic Press Inc.Google Scholar
(27)Mazé, P. & Mazé, P.-J. Jr., (1941). C.R. Soc. Biol., Paris, 135, 808. Cited in Dairy Sci. Abstr. 1945–46, 7, 139.Google Scholar
(28)Sanders, G. P., Matheson, K. J. & Burkey, L. A. (1936). J. Dairy Sci. 19, 395.Google Scholar
(29)Mattick, E. C. V. & Hallett, H. S. (1929). J. Dairy Res. 1, 35.CrossRefGoogle Scholar
(30)Konovalov, V. (1949). Mol. Prom. 10, 32. Cited in Dairy Sci. Abstr. 1950–51, 12, 78.Google Scholar
(31)Sommer, H. H. & Matsen, H. (1935). J. Dairy Sci. 18, 741.CrossRefGoogle Scholar
(32)Hadley, F. B. (1936). J. Dairy Sci. 19, 165.CrossRefGoogle Scholar
(33)Doan, F. J. (1938). J. Dairy Sci. 21, 739.Google Scholar
(34)Ling, E. R. (1956). Dairy Chemistry, 3rd ed., vol. 1, p. 172. London: Chapman and Hall Ltd.Google Scholar
(35)Hostettler, H., Rychener, E. & Künzle, L. (1949). Landw. Jb. Schweiz, 63, 31.Google Scholar
(36)Hostettler, H. & Rychener, E. (1949). Proc. 12th Int. Dairy Congr. 2, 175.Google Scholar
(37)Ford, T. F., Ramsdell, G. A. & Landsman, S. G. (1955). J. Dairy Sci. 38, 843.Google Scholar
(38)Hostettler, H. & Imhof, K. (1951). Milchwissenschaft, 6, 351, 400.Google Scholar
(39)Hostettler, H. & Imhof, K. (1952). Landw. Jb. Schweiz (N.S.), 1, 307.Google Scholar
(40)Hostettler, H. & Imhof, K. (1953). Proc. 13th Int. Dairy Congr. 2, 382.Google Scholar
(41)Zollikofer, E. (1949). Proc. 12th Int. Dairy Congr. 3, 129.Google Scholar
(42)Sasaki, R. & Miyasawa, K. (1955). Jap. J. zootech. Sci. 26, 93. Cited in Dairy Sci. Abstr. 1956 18, 84.Google Scholar
(43)Chevalier, R., Mocquot, G., Alais, C. & Bonnat, M. (1950). C.R. Soc. Biol., Paris, 230, 581. Cited in Dairy Sci. Abstr. 1951, 13, 205.Google Scholar
(44)Browne, F. L. (1939). Casein in milk and its isolation. In Casein and Its Industrial Applications, 2nd ed., p. 24, ed. Sutermeister, E. & Browne, F. L.New York: Reinhold Publishing Corp.Google Scholar
(45)Weisberg, S. M., Johnson, A. H. & McCollum, E. V. (1933). J. Dairy Sci. 16, 225.Google Scholar
(46)Riddell, W. H., Caulfield, W. J. & Whitnah, C. H. (1936). J. Dairy Sci. 19, 157.Google Scholar
(47)Henson, J. H. & Miller, T. B. (1955). J. Dairy Res. 22, 211.Google Scholar
(48)Peltola, E. (1949). Proc. 12th Int. Dairy Congr. 2, 73.Google Scholar
(49)Mazé, P. (1940). C.R. Soc. Biol., Paris, 134, 425. Cited in Chem. Abstr. 1942, 36, 833.Google Scholar
(50)Berridge, N. J. (1952). Analyst, 77, 57.Google Scholar
(51)Christianson, G., Jenness, R. & Coulter, S. T. (1954). Analyt. Chem. 26, 1923.Google Scholar
(52)Kreveld, A. van & Minnen, G. van (1955). Ned melk- en Zuiveltijdschr. 9, 1.Google Scholar