Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-13T01:55:43.210Z Has data issue: false hasContentIssue false

552. Heat-induced acidity in milk

Published online by Cambridge University Press:  01 June 2009

F. H. Grimbleby
Affiliation:
Department of Agricultural Chemistry, The University, Reading

Extract

An inverse relationship has been demonstrated between the titratable acidity and formol titre of raw separated milk heated at temperatures of 60, 70 and 80° C. suggesting that the combination of lactose and protein, with the elimination of basic amino groups attached to protein, is one of the main reactions responsible for the heat-induced acidity. At temperatures of 90 and 100° C., when thermal decomposition of protein takes place, heat-induced acidity develops very rapidly and is accompanied by a marked increase in the number of basic amino groups and in the number of these groups which combine with lactose. Below 80° C. the development of acidity was not accompanied by discoloration of the millk, but at 80° C. and above, browning of the milk occurred. The relation between heat-induced acidity and browning is discussed.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1954

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Dunscombe, E. (1924). J. Dairy Sci. 7, 245.CrossRefGoogle Scholar
(2)Leeds, A. R. (1891). J. Amer. Chem. Soc. 13, 34.CrossRefGoogle Scholar
(3)Whittier, E. O. & Benton, A. G. (1926). J. Dairy Sci. 9, 481.CrossRefGoogle Scholar
(4)Whittier, E. O. & Benton, A. G. (1927). J. Dairy Sci. 10, 126.CrossRefGoogle Scholar
(5)Kass, J. P. & Palmer, L. S. (1940). Industr. Engng Chem. 32, 1360.CrossRefGoogle Scholar
(6)Gould, I. A. (1945). J. Dairy Sci. 28, 367.CrossRefGoogle Scholar
(7)Gould, I. A. (1945). J. Dairy Sci. 28, 378.Google Scholar
(8)Gould, I. A. & Frantz, R. S. (1945). J. Dairy Sci. 28, 387.CrossRefGoogle Scholar
(9)Webb, B. H. & Hufnagel, C. F. (1950). Cited by Whittier, E. O. & Webb, B. H., Byproducts from Milk, p. 192. New York: Reinhold Publishing Corporation.Google Scholar
(10)Townley, R. C. & Gould, I. A. (1943). J. Dairy Sci. 26, 689.CrossRefGoogle Scholar
(11)Keeney, D. G., Patton, S. & Josephson, D. V. (1950). J. Dairy Sci. 33, 526.CrossRefGoogle Scholar
(12)Perry, N. A. & Doan, F. J. (1950). J. Dairy Sci. 33, 176.CrossRefGoogle Scholar
(13)Lea, C. H. (1950). Chem. & Ind. 69, 155.Google Scholar
(14)Henry, K. M., Kon, S. K., Lea, C. H. & White, J. C. D. (1948). J. Dairy Res. 15, 292.CrossRefGoogle Scholar
(15)Henry, K. M., Kon, S. K., Lea, C. H., Smith, J. A. B. & White, J. C. D. (1946). Nature, Lond., 158, 348.CrossRefGoogle Scholar