Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-24T01:26:04.959Z Has data issue: false hasContentIssue false

729. Characteristics of a presumptive pediococcus occurring in New Zealand Cheddar cheese

Published online by Cambridge University Press:  01 June 2009

J. C. Dacre
Affiliation:
The Dairy Research Institute (N.Z.), Massey Agricultural College, Palmerston North, New Zealand

Extract

1. Cultural and biochemical details are given of a homofermentative species of lactic acid-producing bacteria, repeatedly isolated from typical maturing New Zealand Cheddar cheese.

2. The Gram-positive cocci, occurring mainly in pairs and tetrads in acid media, are greatly stimulated in growth by the presence of yeast or tomato extracts. The organism converts glucose into inactive lactic acid and smaller amounts of acetic acid.

3. With the exceptions that the organism does not ferment trehalose and is less tolerant to low pH and high concentrations of Teepol, all its characteristics are similar to those for the genus Pediococcus, in particular to the type species P. cerevisiae Balcke.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1958

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Sherwood, I. R. (1939). J. Dairy Res. 10, 426.CrossRefGoogle Scholar
(2)Hunter, G. J. E. (1946). J. Dairy Res. 14, 283.CrossRefGoogle Scholar
(3)Davis, J. G. (1939). Dairy Ind. 4, 331, 360.Google Scholar
(4)Briggs, M. (1953). J. Dairy Res. 20, 36.CrossRefGoogle Scholar
(5)Gibson, T. & Abdel-Malek, Y. (1945). J. Dairy Res. 14, 35.CrossRefGoogle Scholar
(6)Hayward, A. C. (1957). J. gen. Microbiol. 16, 9.CrossRefGoogle Scholar
(7)Friedemann, T. E. & Graeser, J. B. (1933). J. biol. Chem. 100, 291.CrossRefGoogle Scholar
(8)Neish, A. C. (1952). Analytical Methods for Bacterial Fermentations. Nat. Res. Council of Canada, Rept. No. 48–8–3 (2nd rev.).Google Scholar
(9)Olmsted, W. H., Whitaker, W. M. & Duden, C. W. (1929). J. biol Chem. 85, 109.CrossRefGoogle Scholar
(10)Pederson, C. S., Peterson, W. H. & Fred, E. B. (1926). J. biol. Chem. 68, 151.CrossRefGoogle Scholar
(11)Eggleton, P., Elsden, S. R. & Gough, N. (1943). Biochem. J. 37, 526.CrossRefGoogle Scholar
(12)Felton, E. A., Evans, J. B. & Niven, C. F. Jr, (1953). J. Bact. 65, 481.CrossRefGoogle Scholar
(13)Gutekunst, R. R., Delwiche, E. A. & Seeley, H. W. (1957). J. Bact. 74, 693.CrossRefGoogle Scholar
(14)Dacre, J. C. & Sharpe, M. E. (1956). Nature, Lond., 178, 700.Google Scholar
(15)Jameson, J. E. & Emberley, N. W. (1956). J. gen. Microbiol. 15, 198.CrossRefGoogle Scholar
(16)James, A. T. & Martin, A. J. P. (1952). Biochem. J. 50, 679.CrossRefGoogle Scholar
(17)Pederson, C. S. (1949). Bact. Revs. 13, 225.CrossRefGoogle Scholar
(18)Bergey's Manual of Determinative Bacteriology (1957). 7th ed., pp. 529–31. London: Baillière, Tindall and Cox, Ltd.Google Scholar
(19)Jensen, E. M. & Seeley, H. W. (1954). J. Bact. 67, 484.CrossRefGoogle Scholar
(20)Skerman, V. B. D. (1957). key in Bergey's Manual of Determinative Bacteriology (1957). 7th ed., pp. 9871032. London: Baillière, Tindall and Cox, Ltd.Google Scholar
(21)Tittsler, R. P., Pederson, C. S., Snell, E. E., Hendlin, D. & Niven, C. F. Jr, (1952). Bact. Rev. 16, 227.CrossRefGoogle Scholar
(22)Harrison, A. P. Jr, & Hansen, P. A. (1950). J. Bact. 59, 197.CrossRefGoogle Scholar
(23)Bauman, H. E. & Foster, E. M. (1956). J. Bact. 71, 333.CrossRefGoogle Scholar
(24)Deibel, R. H. & Niven, C. F. Jr, (1957). Bact. Proc. pp. 1415 (Abstract A 21).Google Scholar
(25)Dacre, J. C. (1953). J. Dairy Res. 20, 217.CrossRefGoogle Scholar