Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-11T22:18:45.587Z Has data issue: false hasContentIssue false

691. Oxygen consumption and lactose synthesis rates of mammary gland slices from lactating guinea-pigs

Published online by Cambridge University Press:  01 June 2009

M. Naito
Affiliation:
National Institute for Research in Dairying, University of Reading

Extract

The shape of the lactation curve in guinea-pigs has been studied. The peak was found to occur between days 2 and 3.

The oxygen consumption and lactose synthesis rates were investigated in mammary gland slices and results expressed on both DNA and DW bases.

Oxygen consumption rates on a DNA basis tended to be low at the onset of lactation and high at the peak. Lactose synthesis on a DW basis tended to decline linearly from the onset of lactation, but on a DNA basis showed a peak coinciding with that of the lactation curve.

The significance of these findings has been discussed.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1958

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Naito, M. (1953). Anim. Husb. (Jap.) 7, 999.Google Scholar
(2)Naito, M., Shoda, Y. & Nagai, J. (1955). Endocrinol. (Jap.) 2, 205.Google Scholar
(3)Folley, S. J. & French, T. H. (1949 a). Biochem. J. 45, 117.CrossRefGoogle Scholar
(4)Folley, S. J. & French, T. H. (1949 b). Biochem. J. 45, 270.CrossRefGoogle Scholar
(5)Folley, S. J. & French, T. H. (1950). Biochem. J. 46, 465.CrossRefGoogle Scholar
(6)Kirkham, W. R. & Turner, C. W. (1953). Proc. Soc. exp. Biol., N.Y., 83, 123.Google Scholar
(7)Hoover, C. R. & Turner, C. W. (1954). Endocrinology, 54, 666.CrossRefGoogle Scholar
(8)Smith, T. C. (1956). Arch. Biochem. Biophys. 60, 485.CrossRefGoogle Scholar
(9)Grant, G. A. (1935). Biochem. J. 29, 1905.CrossRefGoogle Scholar
(10)Knodt, C. B. & Petersen, W. E. (1945). J. Dairy Sci. 28, 415.CrossRefGoogle Scholar
(11)Malpress, F. H. & Morrison, A. B. (1950). Biochem. J. 46, 307.CrossRefGoogle Scholar
(12)Hills, A. G. & Stadie, W. C. (1952). J. biol. Chem. 194, 25.CrossRefGoogle Scholar
(13)Reithel, F. J., Horowitz, M. G., Davidson, H. M. & Kittinger, G. W. (1952). J. biol. Chem. 194, 839.CrossRefGoogle Scholar
(14)Heyworth, R. & Bacon, J. S. D. (1955). Biochem. J. 61, 224.CrossRefGoogle Scholar
(15)Duncombe, W. G. (1957). J. Dairy Res. 24, 171.CrossRefGoogle Scholar
(16)Nelson, W. L., Kay, A., Moore, M., Williams, H. H. & Herrington, B. L. (1951). J. Nutr. 44, 585.CrossRefGoogle Scholar
(17)Krebs, H. A. (1950). Biochim. biophys. Acta, 4, 249.CrossRefGoogle Scholar
(18)Stadie, W. C. & Riggs, B. C. (1944). J. biol. Chem. 154, 687.CrossRefGoogle Scholar
(19)Jermyn, M. A. & Isherwood, F. A. (1949). Biochem. J. 44, 402.CrossRefGoogle Scholar
(20)Bacon, J. S. D. & Edelman, J. (1951). Biochem. J. 48, 114.CrossRefGoogle Scholar
(21)Bath, I. H. (1957). Personal communication.Google Scholar
(22)Potter, V. R. & Elvehjem, C. A. (1936). J. biol. Chem. 114, 495.CrossRefGoogle Scholar
(23)Schneider, W. C. (1945). J. biol. Chem. 161, 293.CrossRefGoogle Scholar
(24)Greenbaum, A. L. & Slater, T. F. (1957 a). Biochem. J. 66, 148.CrossRefGoogle Scholar
(25)Greehnbaum, A. L. & Slater, T. F. (1957 b). Biochem. J. 66, 155.CrossRefGoogle Scholar
(26)Dische, Z. (1930). Mikrochemie, 8, 4.CrossRefGoogle Scholar
(27)Snedecor, J. W. (1946). Statistical Methods (4th ed.). Iowa: College Press, Ames.Google ScholarPubMed
(28)Fisher, R. A. & Yates, F. (1953). Statistical Tables for Biological, Agricultural and Medical Research (4th ed.). Oliver and Boyd: Edinburgh and London.Google Scholar