Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-26T01:48:50.070Z Has data issue: false hasContentIssue false

576. The volatile compounds associated with oxidized flavour in skim milk

Published online by Cambridge University Press:  01 June 2009

D. A. Forss
Affiliation:
Dairy Research Section, C.S.I.R.O., Melbourne, Australia
E. G. Pont
Affiliation:
Dairy Research Section, C.S.I.R.O., Melbourne, Australia
W. Stark
Affiliation:
Dairy Research Section, C.S.I.R.O., Melbourne, Australia

Extract

Using chromatographic techniques, a number of compounds was isolated from the steam distillates of skim milk containing oxidized (cardboard) flavour. The following compounds were definitely identified: acetone, acetaldehyde, n–hexanal, crotonaldehyde, and the C5 to C11 2-unsaturated aldehydes. Presumptive evidence for the presence of several 2,4-diunsaturated aldehydes of medium chain length was obtained also. Acetaldehyde and acetone were also isolated from normal skim milk; these two compounds appear to play no part in the defect.

2-Enals, in particular the C8 and C9, were considered to be the principal flavour-determining compounds. In milk at dilutions of 1 part in 107 to 109 they impart an oxidized type of flavour resembling that known as cardboard. Evidence was obtained that 2,4-dienals were also present and they produced a similar flavour.

It may further be deduced that cardboard flavour in milk is caused by the preferential oxidation of di- and polyunsaturated fatty acids.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1955

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Brown, W. C. & Thurston, L. M. (1940). J. Dairy Sci. 23, 23.CrossRefGoogle Scholar
(2)Greenback, G. R. (1948). J. Dairy Sci. 31, 31.Google Scholar
(3)Kruisheer, C. I. (1952). J. Neth. Milk & Dairy, 6, 6.Google Scholar
(4)Lea, C. H. (1953). XIIIth Int. Dairy Congr. 3, sect, iv, 1037.Google Scholar
(5)Greenback, G. R. (1949). XIIth Int. Dairy Congr., 2, sect, ii, p. 284.Google Scholar
(6)Pont, E. G. (1953). XIIIth Int. Dairy Congr. 4, sect, iv, p. 320.Google Scholar
(7)Pont, E. G. (1953). XIIIth Int. Dairy Congr. 3, sect, iv, p. 1049.Google Scholar
(8)Keeney, M. & Doan, F. J. (1951). J. Dairy Sci. 34, 34.Google Scholar
(9)Dunkley, W. L. (1951). Food Technol. 5, 5.Google Scholar
(10)Pont, E. G. (1952). J. Dairy Res. 19, 19.CrossRefGoogle Scholar
(11)Demaecker, J. & Martin, R. H. (1954). Nature, Lond., 173, 173.CrossRefGoogle Scholar
(12)Brockmann, H. & Schodder, H. (1941). Ber. dtsch. chem. Ges. 74, 74.CrossRefGoogle Scholar
(13)Gordon, B. E., Wopat, F. Jr., Bttrnham, H. D. & Jones, L. C. Jr.(1951). Anal. Chem. 23, 1754.CrossRefGoogle Scholar
(14)Fairbairn, D. & Harpur, R. P. (1951). Canad. J. Chem. 29, 29.CrossRefGoogle Scholar
(15)Girard, A. & Sandulesco, G. (1936). Helv. chim. acta. 19, 19.CrossRefGoogle Scholar
(16)Lederer, E. & Nachmias, G. (1949). Bull, soc. chim. Fr. 400.Google Scholar
(17)Forss, D. A. & Dunstone, E. A. (1954). Nature, Lond., 173, 173.CrossRefGoogle Scholar
(18)Huelin, F. E. (1952). Austr. J. sci. Res. B, 5, 5.Google Scholar
(19)Braude, E. A. & Jones, E. R. H. (1945). J. chem. Soc. p. 498.CrossRefGoogle Scholar
(20)Martin, C. J., Schepartz, A. I. & Daubert, B. F. (1948). J. Amer. Oil Chem. Soc. 25, 25.CrossRefGoogle Scholar
(21)Braddock, L. I., Garlow, K. Y., Grim, L. I., Kirkpatrick, A. F., Pease, S. W., Pollard, A. J., Price, E. F., Reissmann, T. L., Rose, H. A. & Willard, M. L. (1953). Anal. Chem. 25, 25.CrossRefGoogle Scholar
(22)Huntress, E. H. & Mulliken, S. P. (1946). Identification of Pure Organic Compounds, Order I, p. 43. New York: John Wiley and Sons, Inc.Google Scholar
(23)Stapf, R. J. & Daubert, B. F. (1950). J. Amer. Oil Chem. Soc. 27, 27.CrossRefGoogle Scholar
(24)Swift, C. E., O'Connor, R. T., Brown, L. E. & Dollear, F. G. (1949). J. Amer. Oil Chem. Soc. 26, 26.Google Scholar
(25)Brady, O. L. & Elsmie, G. V. (1926). Analyst, 51, 51.CrossRefGoogle Scholar
(26)Kuhn, R. & Grundmann, M. (1937). Ber. dtsch. chem. Ges. 70, 70.Google Scholar
(27)Kawahara, F. K. & Dutton, H. J. (1952). J. Amer. Oil Chem. Soc. 29, 29.Google Scholar
(28)Gouge, M. (1951). Ann. chim. 6, 6.Google Scholar
(29)Takei, S., Sakato, G., Ono, M. & Kuroiwa, Y. (1938). J. Agric. chem. Soc. Japan, 14, 14.Google Scholar
(30)Martin, C. J., Schepartz, A. I. & Daubert, B. F. (1948). J. Amer. chem. Soc. 70, 70.Google Scholar
(31)Scanlan, J. T. & Swern, D. (1940). J. Amer. chem. Soc. 62, 62.Google Scholar
(32)Kuhn, R. & Hotter, M. (1930). Ber. dtsch. chem. Ges. 63, 63.Google Scholar
(33)Baumgarten, P. & Glatzel, G. (1926). Ber. dtsch. chem. Ges. 59 B, 2664.Google Scholar
(34)Holm, U., Wode, G. & Thomé, K. E. (1952). Medd. Statens Mejeriförsök, no. 37.Google Scholar
(35)Thomé, K. E. & Mattsson, S. (1953). XIIIth Int. Dairy Congr. 3, sect, iv, p. 1056.Google Scholar
(36)Schepartz, A. I. & Daubert, B. F. (1950). J. Amer. Oil Chem. Soc. 27, 27.CrossRefGoogle Scholar
(37)Swift, C. E., Dollear, F. G., Brown, L. E. & O'Connor, R. T. (1948). J. Amer. Oil Chem. Soc. 25, 25.Google Scholar