Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T01:26:18.986Z Has data issue: false hasContentIssue false

572. The heat coagulation of milk

Published online by Cambridge University Press:  01 June 2009

G. T. Pyne
Affiliation:
Dairy Chemistry Department, University College, Cork
Kathleen A. McHenry
Affiliation:
Dairy Chemistry Department, University College, Cork

Extract

1. A study of the compositional factors which affect the heat coagulation of milk has been undertaken.

2. Calcium-ion concentration and colloidal phosphate content appear to be the chief factors determining the tendency of a milk to coagulate on heating.

3. Acidity (mainly derived from thermal decomposition of lactose and casein) and heat denaturation of casein are supplementary coagulation factors which develop during the heating process.

4. Lactose, as the main source of heat-developed acidity, is an important secondary factor in heat coagulation, but not an essential one. Coagulation can proceed, though more slowly, in its absence. The serum proteins play no part in the phenomenon.

5. A provisional theory of the heat coagulation of milk based on these findings is put forward.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1955

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Sommer, H. H. & Hart, E. B. (1919). J. biol. Chem. 40, 571.CrossRefGoogle Scholar
(2)Rogers, L. A., Deysher, E. F. & Evans, F. R. (1921). J. Dairy Sci. 4, 294.CrossRefGoogle Scholar
(3)Pyne, G. T. (1953). Chem. & Ind. 72, 302.Google Scholar
(4)Powell, M. E. & Palmer, L. S. (1935). J. Dairy Sci. 18, 401.CrossRefGoogle Scholar
(5)Cole, W. C. & Tarassuk, N. P. (1946). J. Dairy Sci. 29, 421.CrossRefGoogle Scholar
(6)Kaloyereas, S. A. (1954). Science, 120, 111.CrossRefGoogle Scholar
(7)Fiske, C. H. & Subbarow, Y. (1925). J. biol. Chem. 66, 375.CrossRefGoogle Scholar
(8)Pyne, G. T. (1948). Nature, Lond., 162, 925.CrossRefGoogle Scholar
(9)Hastings, A. B., Mclean, F. C., Eichelberger, L., Hall, J. L. & Da Costa, E. (1934). J. biol. Chem. 107, 351.CrossRefGoogle Scholar
(10)Smeets, W. T. G. M. & Seekles, L. (1952). Nature, Lond., 169, 802.CrossRefGoogle Scholar
(11)Pyne, G. T. (1953). Proc. XIIIth Int. Dairy Congress, The Hague, 3, 1032.Google Scholar
(12)Van Krefeld, A. (1953). Discussion on foregoing. XIIIth Int. Dairy Congress, The Hague.Google Scholar
(13)Kass, J. P. & Palmer, L. S. (1940). Industr. Engng Chem. 32, 1360.CrossRefGoogle Scholar
(14)Gould, I. A. (1945). J. Dairy Sci. 28, 367, 379.CrossRefGoogle Scholar
(15)Pyne, G. T. & Ryan, J. J. (1950). J. Dairy Res. 17, 200.CrossRefGoogle Scholar
(16)Gould, I. A. & Frantz, R. S. (1945). J. Dairy Sci. 28, 387.CrossRefGoogle Scholar
(17)Howat, G. R. & Wright, N. C. (1934). Biochem. J. 28, 1336.CrossRefGoogle Scholar
(18)Eilers, H. (1945). Versl. Rijkslandb Proefst., 's Grav., 50 (15), G 1009.Google Scholar
(19)Kometiani, P. A. (1931). Milchw. Forsch 12, 433.Google Scholar
(20)Burg, P.Van Der, (1947). Ned. melk en Zuiveltijdschr. 1, 69.Google Scholar
(21)Pyne, G. T. (1949). Proc. XIIth Int. Dairy Congress, Stockholm, 2, 231.Google Scholar