Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-11T22:37:31.054Z Has data issue: false hasContentIssue false

543. Methods for the growth and enumeration of anaerobic spore-formers from cheese, with observations on the effect of nisin

Published online by Cambridge University Press:  01 June 2009

A. Hirsch
Affiliation:
National Institute for Research in Dairying, University of Reading
Elisabeth Grinsted
Affiliation:
National Institute for Research in Dairying, University of Reading

Extract

Severe losses are caused in some types of cheese by the growth of spore-forming anaerobes. The species most commonly involved is Clostridium butyricum and its variants, but other clostridia such as Cl. sporogenes (Bacillus putrificus of Dorner (1)) may also be concerned. Existing methods for the study of the properties of these organisms are inadequate, a fact on which Rosenberger(2) has commented. This work has been particularly concerned with devising a medium suitable for all clostridia, which is clear, simple to prepare, and which requires no special anaerobic precautions in its use.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1954

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Dorner, W. (1938). Lait, 18, 449.CrossRefGoogle Scholar
(2)Rosenberger, R. F. (1951). Proc. Soc. appl. Bact. 14, 161.Google Scholar
(3)McClintock, M., Serres, L., Marzolf, J. J., Hirsch, A. & Mocqtuot, G. (1952). J. Dairy Res. 19, 187.CrossRefGoogle Scholar
(4)Hirsch, A., Grinsted, E., Chapman, H. R. & Mattick, A. T. R. (1951). J. Dairy Res. 18, 205.CrossRefGoogle Scholar
(5)Andersen, A. A. (1952). J. Bact. 64, 145.CrossRefGoogle Scholar
(6)Cameron, E. J. & Bohrer, C. W. (1951). Food Technol. 5, 340.Google Scholar
(7)Williams, O. B. & Fleming, T. C. (1952). Antibiotics and Chemotherapy, 2, 75.Google Scholar
(8)van Beynum, J. & Pette, J. W. (1935/6). Zbl. Bakt. II. Abt. 93, 198.Google Scholar
(9)Burri, R. (1902). Zbl. Bakt. II, 8, 533.Google Scholar
(10)Hall, I. C. (1920). J. infect. Dis. 27, 576.CrossRefGoogle Scholar
(11)Hayward, N. J. & Miles, A. A. (1943). Lancet ii, 116.CrossRefGoogle Scholar
(12)McClung, L. S. (1935). J. Bact. 29, 173.CrossRefGoogle Scholar
(13)Spray, R. S. (1936). J. Bact. 32, 135.CrossRefGoogle Scholar
(14)Prévot, A. R. (1948). Manuel de classification et de détermination des bactéries anaérobies, 2nd ed. Paris: Masson et Cie.Google Scholar
(15)Bhat, J. V. & Barker, H. A. (1947). J. Bact. 54, 381.CrossRefGoogle Scholar
(16)Olsen, A. M. & Scott, W. J. (1950). Aust. J. set. Res. B, 3, 219.Google Scholar
(17)Brewer, J. H. (1940). J. Amer. Med. Ass. 115, 598.CrossRefGoogle Scholar
(18)Clark, F. M. (1943). Food Res. 8, 327.Google Scholar
(19)Wynne, E. S. & Foster, J. W. (1948). J. Bact. 55, 61.CrossRefGoogle Scholar
(20)Weinberg, M., Nativelle, R. & Prévot, A. (1937). Les Microbes Anaérobies. Paris: Masson et Cie.Google Scholar
(21)McClung, L. S. & McCoy, E. (1934). J. Bact. 28, 267.CrossRefGoogle Scholar
(22)Crossley, E. L. (1941). J. Soc. chem. Ind., Lond., 60, 131.CrossRefGoogle Scholar
(23)Stevens, M. K. Private communication.Google Scholar
(24)Andersen, A. A. (1951). J. Bact. 62, 425.CrossRefGoogle Scholar
(25)Miles, A. A. & Misra, S. S. (1938). J. Hyg., Camb., 38, 732.Google Scholar
(26)Ingram, M. & Robinson, E. H. M. (1951). Proc. Soc. appl. Bact. 14, 62.Google Scholar
(27)Bordet, J. & Renaux, E. (1930). Ann. Inst. Pasteur, 45, 1.Google Scholar
(28)Hardwick, W. A., Guirard, B. & Foster, J. W. (1951). J. Bact. 61, 145.CrossRefGoogle Scholar
(29)Hirsch, A. & Grinsted, E. (1951). J. Dairy Res. 18, 198.CrossRefGoogle Scholar