Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-12T04:04:26.535Z Has data issue: false hasContentIssue false

484. Studies in the bacteriology of milk: IV. The Gram-negative rods of milk

Published online by Cambridge University Press:  01 June 2009

Y. Abd-El-Malek
Affiliation:
Bacteriology Department, College of Agriculture, Edinburgh
T. Gibson
Affiliation:
Bacteriology Department, College of Agriculture, Edinburgh

Extract

Using non-selective methods of isolation, the species that was detected with greatest frequency in raw milks of varying purity is Alcaligenes viscosus. The majority of the cultures do not produce a ropy condition in milk or other media. In some strains the oxidation of citrate, and hence the production of alkalinity in milk, is slow and erratic, being dependent on the occurrence of a mutation. The only Gram-negative rod detected in laboratory-pasteurized milk was A. tolerans n.sp., a description of which is given. That species is similar in general character to A. viscosus but differs principally in its greater resistance to heat, its inability to attack fats, and its erratic and usually poor growth on laboratory media. Greatly improved growth on nutrient agar is obtained by the addition of lactate and relatively high concentrations of ferrous or ferric salts.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1952

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Abd-El-Malek, Y. & Gibson, T.(1948). J. Dairy Res. 15, 233.CrossRefGoogle Scholar
(2)Abd-El-Malek, Y. & Gibson, T.(1948). J. Dairy Res. 15, 249.Google Scholar
(3)Abd-El-Malek, Y. & Gibson, T.(1952). J. Dairy Res. 19, 153.CrossRefGoogle Scholar
(4)Elis Jones, G. & Thomas, S. B.(1950). Proc. Soc. appl. Bact. 13, 13.Google Scholar
(5)Conn, H. J. (1942). J. Bact. 44, 353.CrossRefGoogle Scholar
(6)Ayers, S. H. & Johnson, W. T. (1913). Bull. U.S. Bur. Anim. Ind. no. 161.Google Scholar
(7)Weldin, J. C.(1927). Iowa St. Coll. J. Sci. 1, 186.Google Scholar
(8)Lehmann, K. B. & Neumann, R.O.(1899). Atlas und Grundriss der Bakteriologie, 2. Aufl. MÜnchen: J. F. Lehmann.Google Scholar
(9)Magnusson, H. (1918). Zbl. Bakt. (2. Abt.), 48, 459.Google Scholar
(10)Bergey's Manual of Determinative Bacteriology (1948), 6th ed. Edited by Breed, R. S., Murray, E. G. D. & Hitchens, A. P.London: Bailliére, Tindall and Cox.Google Scholar
(11)Buchanan, R. E. & Hammer, B. W. (1915). Res. Butt. la agric. Exp. Sta. no. 22.Google Scholar
(12)Long, H. F. & Hammer, B. W. (1936). Iowa St. Coll. J. Sci. 10, 261.Google Scholar
(13)Adametz, L. (1891). Landw. Jb. 20, 185. Cited by Buchanan & Hammer (11).Google Scholar
(14)Ayers, S. H., Rupp, P. & Johnson, W. T. (1919).Bull. U.S. Dep. Agric. no. 782.Google Scholar
(15)Simmons, J. S. (1926). J. infect. Dis. 39, 209.Google Scholar
(16)Koser, S. A. (1923). J. Bact. 8, 493.Google Scholar
(17)Horn, J. (1902). Zbl. Bakt. (2. Abt.), 9, 338.Google Scholar
(18)O'Droma, L. & Grimes, M. (1941). J. Dep. Agric. Eire, 38, 68.Google Scholar
(19)Sato, Y. (1907). Zbl. Bakt. (2. Abt.), 19, 27.Google Scholar
(20)Stark, C. N. & Scheib, B. J. (1936). J. Dairy Sci. 19, 191.Google Scholar
(21)Associates of L. A. Rogers (1935). Fundamentals of Dairy Science, 2nd ed.New York: Reinhold Publishing Corporation.Google Scholar
(22)Stocker, B. (1951). J. gen. Microbiol. 5, xviii.Google Scholar