Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-24T01:55:23.955Z Has data issue: false hasContentIssue false

353. ‘Malty’ flavour in starter and butter

Published online by Cambridge University Press:  01 June 2009

A. I. Virtanen
Affiliation:
Biochemical Institute, Laboratory of Valio, Helsinki, Finland
O. E. Nikkilä
Affiliation:
Biochemical Institute, Laboratory of Valio, Helsinki, Finland

Extract

A Gram-positive, aroma bacterium, the so-called ‘malt coccus’, has been isolated from malty-flavoured starters. It coagulates milk most readily at 35–37° C. The ‘malt coccus’ differs from the aroma bacteria mainly in that it forms acetaldehyde from pyruvic acid, evidently through carboxylase. Acetaldehyde is the chief factor in the formation of malty flavour. The ‘malt coccus’ sours milk feebly. If starter is heavily contaminated with the ‘malt coccus’, the acidity (SH°) is reduced but the aroma reaction (V.-P.) increases. The malty flavour persists in the starter during transfers and becomes more marked with rising temperature. The ‘malt coccus’ retains its aroma-forming ability for long periods in the laboratory.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1947

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Weigmann, H. (1899). Zbl. Bakt. II, 14, 5.Google Scholar
(2)Sadler, W. (1911). Zbl. Bakt. II, 29, 1.Google Scholar
(3)Sadler, W. (1926). Trans, roy. Soc. Can. 3, ser. 20. (Ref.: Heucke R., Thesis, p. 36, Kiel, 1935.)Google Scholar
(4)Hammer, B. W. & Baker, M. P. (1926). Res. Bull. la agric: Exp. Sta. 99, 281. (Ref.: Löhnis, F., Handb. der landwirtsch: Bakteriologie, p. 487, Berlin, 1941.)Google Scholar
(5)Hammer, B. W. & Cordes, W. A. (1921). Res. Bull. la agric. Exp. Sta. 68, 147. (Ref.: Heucke, R., Thesis, p. 36, Kiel, 1935.)Google Scholar
(6)Weigmann, H. (1924). Pilzkunde der Milch, p. 79. Berlin.Google Scholar
(7)Sadler, W. (1928). Trans, roy. Soc. Can., Sect, v, 22, 243. (Ref.: LÖhnis, F., Handb. der landwirtsch. Bakteriologie, p. 488, Berlin, 1941.)Google Scholar
(8)Kelly, C. D. (1928). Trans, roy. Soc. Can., Sect, v, 22, 227. (Ref.: Heucke, R., Thesis, p. 36, Kiel, 1935.)Google Scholar
(9)Leitch, R. H. (1934). Scottish J. Agric. 17, 293. (Ref.: LÖhnis, F., Handb. der landwirtsch. Bakteriologie, p. 487, Berlin, 1941.)Google Scholar
(10)Heucke, R. (1935). Thesis, Kiel.Google Scholar
(11)Stocker, W. (1937). Wiss. Ber. XI. Milchwirtsch. Weltkongr. Berlin, 1937, 2, 111.Google Scholar
(12)Baumann, J. (1934). Landw. Jb. Schweiz. Heft 2. (Ref.: Hetjcke, R., Thesis, p. 36, 1935.)Google Scholar
(13)Tracy, P. H. & Ramsey, R. J. (1931).J. Dairy Sci. 14, 457.CrossRefGoogle Scholar
(14)Virtanen, A. I. & Nikkilä, O. E. (1944). Suomen Kemistilehti, B, 17, 33.Google Scholar
(15)Storgårds, T. (1940). Meijeritiet. Aikakauskirja, 2, 22.Google Scholar
(16)Silverman, M. & Werkman, C. H. (1941). J. biol. Chem. 138, 35.CrossRefGoogle Scholar
(17)Stahly, G. H. & Werkman, C. H. (1942). Biochem. J. 36, 575.CrossRefGoogle Scholar
(18)Virtanen, A. I. (1937). Wiss. Ber. XI. Milchwirtsch. Weltkongr. Berlin, 1937, 2, 121.Google Scholar
(19)Rimini, E. (1904). Z. anal. Chem. 43, 517.CrossRefGoogle Scholar
(20)Block, R. J. & Bolling, D. (1939). J. biol. Chem. 130, 365.CrossRefGoogle Scholar
(21)Hirsch-Kauffmann, H. (1924). Hoppe-Seyl. Z. 140, 25.CrossRefGoogle Scholar
(22)Lieb, H. & Zacherl, M. K. (1932). Hoppe-Seyl. Z. 211, 211.CrossRefGoogle Scholar
(23)Virtanen, A. I. & Pulkki, L. H. (1928). J. Amer. Chem. Soc. 50, 3147.CrossRefGoogle Scholar
(24)Virtanen, A. I. & Karström, H. (1937). Ann. Acad. Sci. fenn. Ser. A, 48, no. 2, pp. 128.Google Scholar
(25)Kuriloff, B. (1897). Ber. dtsch. chem. Ges. 30, 741.CrossRefGoogle Scholar