Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-25T01:19:08.275Z Has data issue: false hasContentIssue false

350. The effect of sodium chloride on the pH values of milk and of butter serum

Published online by Cambridge University Press:  01 June 2009

G. Loftus Hills
Affiliation:
Dairy Research Section, Commonwealth Council for Scientific and Industrial Research, Australia

Extract

The addition of 10% of sodium chloride to milk caused an average drop in pH of 0·42 unit. Different workers have found very variable relations between the pH of cream and the pH of salted butter churned from it. When 10% of sodium chloride is added to 0·2% solutions of sodium citrate or sodium phosphate there is a drop in pH of the order of 1 unit. When an alkaline solid phase is present as in the serum of neutralized cream and butter, and in milk, this change in pH may be diminished or reversed, possibly by increased solubility of the alkaline precipitate in sodium chloride solution. Factors are listed which will cause the pH of salted butter to differ from that of the cream from which it was made. In the churning of alkaline creams there occurs in the butter an increase in the proportion to the serum water of calcium phosphate and of other solids-not-fat.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1947

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Mohr, W. & Ritterhoff, K. (1937). Proc. 11th World&s Dairy Congr., Berlin, 2, 540.Google Scholar
(2)Huziker, O. F., Cordes, W. A. & Nissen, B. H. (1931). J. Dairy Sci. 14, 347.CrossRefGoogle Scholar
(3)Mcdowall, F. H., Smith, J. W. & Mcdowell, A. K. R. (1927). N.Z. J. Sci. Tech. 19, 5, 345.Google Scholar
(4)Townley, R. C. & Gould, I. A. (1940). Quart. Bull. Mich, agric. Exp. Sta. 23, 69.Google Scholar
(5)Wiley, W. J. & Newman, F. S. J. (1941). J. Dep. Agric. Vict. 39, 232.Google Scholar
(6)White, A. J. (1944). Sci. Agric. 25, 137.Google Scholar
(7)Dole, M. (1932). J. Amer. chem. Soc. 54, 3095.CrossRefGoogle Scholar
(8)Amis, E. S. & Gabbard, J. L. (1937). J. Amer. chem. Soc. 59, 557.CrossRefGoogle Scholar
(9)Dole, M., Roberts, R. M. & Holley, C. E. (1941). J. Amer. chem. Soc. 63, 735.CrossRefGoogle Scholar
(10)Bates, R. G. & Acree, S. F. (1944). Bur. Stand. J. Res. 32, 131.CrossRefGoogle Scholar
(11)Bates, R. G., Hamer, W. J., Manov, G. G. & Acree, S. F. (1942). Bur. Stand. J. Res. 29, 183.CrossRefGoogle Scholar
(12)Sager, E. E., Keegan, H. J. & Acree, S. F. (1943). Bur. Stand. J. Res. 31, 323.CrossRefGoogle Scholar
(13)Hastings, A. B., Mclean, F. C, Eichelberger, L., Hall, J. & Da Costa, E. (1934). J. biol. Chem. 107, 351.CrossRefGoogle Scholar
(14)Holt, L. E., La Mer, V. K. & Chown, H. B. (1925). J. biol. Chem. 64, 509.CrossRefGoogle Scholar
(15)Mohr, W., Brockmann, C. & Muller, W. (1932). Molkereiztg, Hildesh., 46, 633.Google Scholar