Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-25T01:25:30.495Z Has data issue: false hasContentIssue false

347. The disinfection of contaminated metal surfaces with hypochlorite solutions

Published online by Cambridge University Press:  01 June 2009

F. K. Neave
Affiliation:
National Institute for Research in Dairying, University of Reading
W. A. Hoy
Affiliation:
National Institute for Research in Dairying, University of Reading

Extract

Tinned trays were artificially infected with Staphylococcus aureus in diluted milk and the dried surfaces disinfected by rinsing with sodium hypochlorite solutions.

Under the conditions described, which we believe approximate those on many dairy utensils which have been imperfectly cleaned, the pH of hypochlorite solutions was found not to be a very important factor in determining their germicidal efficiency. At pH 10 and 11, the solutions were equal to or slightly more efficient germicides than solutions at pH 7.

In the destruction of 99% of the organisms on the metal trays, a solution at pH 10, containing 200 p.p.m. available chlorine was about 7 times as rapid as one with 25 p.p.m. available chlorine.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1947

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Mattick, A. T. R., Hoy, W. A. & Neave, F. K. (1942). N.I.R.D., Shinfield, nr. Reading. Publication no. 691.Google Scholar
(2)Neave, F. K. & Hoy, W. A. (1943). Proc. Soc. agric. Bact. p. 36.Google Scholar
(3)Andrewes, F. W. & Orton, K. J. P. (1904). Zbl. Bakt. I. Orig. 35, 645, 811.Google Scholar
(4)Halwerda, K. (1928). Meded. Dienst der Volksgezondh. Ned.-Ind. 17, (2), 251.Google Scholar
(5)Rudolph, A. S. (1942). Iowa St. Coll. J. Sci. 17, 114.Google Scholar
(6)Weber, G. R. (1942). Iowa St. Coll. J. Sci. 17, 155.Google Scholar
(7)Weber, G. R. & Levine, M. (1944). Amer. J. publ. Hlth, 34, 719.Google Scholar
(8)Myers, R. P. & Johnson, A. H. (1932). Int. Ass. Milk Dlrs, Lab. Sec., p. 21.Google Scholar
(9)Johns, C. K. (19331934). Sci. Agric. 14, 585.Google Scholar
(10)Devereux, E. D. & Mallmann, W. L. (1934). J. Dairy Sci. 17, 351.Google Scholar
(11)Dole, M. (1931). J. Amer. chem. Soc. 53, 260.Google Scholar
(12)Powney, J. & Jordan, D. O. (1937). J. Soc. chem. Ind., Lond., 56, 133T.Google Scholar
(13)Costigan, S. M. (1936). J. Bact. 32, 57.Google Scholar
(14)Costigan, S. M. (1937). J. Bact. 34, 1.CrossRefGoogle Scholar
(15)Mallmann, W. L. (1934). Bull. Mich. Engng Exp. Sta. no. 59.Google Scholar
(16)Bryan, C. S., Darby, C. W., Mallmann, W. L. & Corbett, A. C. (1942). J. Milk Tech. 5, 77.Google Scholar
(17)Ames, A. M. & Smith, W. W. (1944). J. Bact. 47, 445 (Abstr.).Google Scholar
(18)Zoller, H. F. (1923). J. Dairy Sci. 6, 310.Google Scholar
(19)Wright, N. C. (1926). Biochem. J. 20, 524.Google Scholar
(20)Wright, N. C. (1936). Biochem. J. 30 1661.Google Scholar
(21)Cousins, C. M. & Wolf, J. Z. (1946). Proc. Soc. appl. Bact. no. 1, p. 15; also Nature, Lond., 158, 755.Google Scholar
(22)Rupp, P. (1922). Bull. U.S. Dep. Agric. no. 1114.Google Scholar
(23)Tilley, F. W. & Chapin, R. M. (1930). J. Bact. 19, 295.Google Scholar
(24)Prucha, M. J. (1933). Ann. Rep. int. Ass. Dairy Insp., Wash., 22, 77.Google Scholar
(25)Charlton, D. B. & Levine, M. (1935). J. Bact. 30, 163.Google Scholar
(26)Myers, R. P. (1929). J. agric. Res. 38, 521.Google Scholar
(27)Scales, F. M. & Kemp, M. (1939). J. Milk Tech. 2, 215.Google Scholar