Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-26T01:29:20.609Z Has data issue: false hasContentIssue false

274. Preliminary experiments on the vapour pressure of dairy products

Published online by Cambridge University Press:  01 June 2009

G. W. Scott Blair
Affiliation:
National Institute for Research in Dairying, University of Reading
F. J. Dix
Affiliation:
National Institute for Research in Dairying, University of Reading
A. Wagstaff
Affiliation:
National Institute for Research in Dairying, University of Reading

Extract

1. Methods for measuring the vapour pressure of cheese and milk are discussed, and vapour pressure/moisture curves are given for a number of different varieties of cheese. The progressive artificial damping and drying of cheese produces no appreciable hysteresis in these curves.

2. The vapour pressure curve is much influenced by the amount of salt in the cheese, but differences between varieties cannot be accounted for entirely in terms of differences in NaCl content.

3. A preliminary experiment on the relationship between vapour pressure of Stilton cheese and amount of blueing indicated that such a relationship does in fact exist but that a much larger experiment is required before the connexion is fully understood.

4. Preliminary experiments on the measurement of the vapour pressure of milk, although interrupted at rather an early stage, showed that, even so, additions of 2–3% of water in milk can be satisfactorily detected.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1941

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Lovelace, B. F., Frazer, J. G. W. & Miller, E. (1916). J. Amer. chem. Soc. 38, 514.CrossRefGoogle Scholar
(2)Frazer, J. G. W., Lovelace, B. F. & Rogers, T. H. (1920). J. Amer. chem. Soc. 42, 1793.CrossRefGoogle Scholar
(3)Lovelace, B. F.Frazer, J. G. W. & Sease, V. B. (1921). J. Amer. chem. Soc. 43, 102.CrossRefGoogle Scholar
(4)Lovelace, B. F., Bahlke, W. H. & Frazer, J. G. W. (1923). J. Amer. chem. Soc. 45, 2930.CrossRefGoogle Scholar
(6)Chandler, R. C. (1940). J. phys. Chem. 44, 574.CrossRefGoogle Scholar
(6)Regnault, . (1845). Ann. Chim. Phys. 15, 129.Google Scholar
(7)Pearce, J. N. & Snow, R. D. (1927). J. phys. Chem. 31, 231.CrossRefGoogle Scholar
(8)Bechtold, M. F. & Newton, R. F. (1940). J. Amer. chem. Soc. 62, 1390.CrossRefGoogle Scholar
(9)Barger, G. (1904). J. chem. Soc. 85, 286.CrossRefGoogle Scholar
(10)Bousfield, W. R. & Bousfield, C. E. (1923). Proc. roy. Soc. A, 103, 429.Google Scholar
(11)Sinclair, D. A. (1933). J. phys. Chem. 37, 495.CrossRefGoogle Scholar
(12)Hepburn, J. R. I. (1932). J. chem. Soc. p. 550.CrossRefGoogle Scholar
(13)Hill, A. V. (1928). Proc. roy. Soc. B, 103, 117.Google Scholar
(14)Hill, A. V. (1930). Proc. roy. Soc. A, 127, 9.Google Scholar
(15)Baldes, E. J. (1934). J. sci. Instrum. 11, 223.CrossRefGoogle Scholar
(16)Margaria, R. (1930). J. Physiol. 70, 417.CrossRefGoogle Scholar
(17)Pyenson, H. & Dahle, C. D. (1938). J. Dairy Sci. 21, 169.CrossRefGoogle Scholar
(18)Pyenson, H. & Dahle, C. D. (1938). J. Dairy Sci. 21, 407.Google Scholar
(19)Pyenson, H. & Dahle, C. D. (1938). J. Dairy Sci. 21, 601.CrossRefGoogle Scholar
(20)Kistler, S. S. (1936). J. Amer. chem. Soc. 58, 901.CrossRefGoogle Scholar
(21)Schofield, R. K. (1935). Trans. Third Int. Congr. Soil Sci. 2, 37.Google Scholar
(22)Schofield, R. K. & Da Costa, J. V. B. (1935). Trans. Third Int. Congr. Soil Sci. 1, 6.Google Scholar
(23)Sommer, H. (1928). J. Dairy Sci. 11, 9.CrossRefGoogle Scholar