Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-12T15:11:54.353Z Has data issue: false hasContentIssue false

4373 Defining the role of non-canonical PIK3CA mutations in head and neck squamous cell carcinoma

Published online by Cambridge University Press:  29 July 2020

Michelle Ji-Eun Lee
Affiliation:
University Of California, San Francisco
Nan Jin
Affiliation:
University Of California, San Francisco
Janice Cho
Affiliation:
University Of California, San Francisco
Patrick Kwok-shing
Affiliation:
University Of California, San Francisco
Gordon B. Mills
Affiliation:
University Of California, San Francisco
Daniel E. Johnson
Affiliation:
University Of California, San Francisco
Jennifer R. Grandis
Affiliation:
University Of California, San Francisco
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

OBJECTIVES/GOALS: To characterize the oncogenic potential of HNSCC cell lines harboring 17 non-canonical PIK3CA mutations. METHODS/STUDY POPULATION: Non-canonical PIK3CA mutant constructs generated via site-directed mutagenesis are subcloned into doxycycline-inducible vector pLVX-Puro. Serum-dependent HNSCC cell line (PCI-52-SD1) is then stably transfected with vectors and undergo doxycycline-induction. Cell survival is determined by depriving cells of fetal bovine serum for 72 hours and quantifying remaining cells with 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays. Cell proliferation and migration is evaluated with colony formation assays and transwell assays respectively. RESULTS/ANTICIPATED RESULTS: To date, the survival behavior of eight non-canonical mutants was assessed. Three mutants – Q75E, V71I, and E970K – exhibited 18.7-26.7% greater survival rate relative to cells transfected with wild-type. Five mutants – R519G, Y606C, W328S, C905S, and M1040I – demonstrated survival rates that differed only by −4.3% to +6.6% relative to wild-type. We hypothesize the three activating mutants that exhibited increased survival will also demonstrate increased cell proliferation and migratory behavior whereas the three neutral mutants will not differ from control. DISCUSSION/SIGNIFICANCE OF IMPACT: Ongoing HNSCC PI3K inhibitor trials could be more effective if all PIK3CA hyperactivation mutations are known. Identifying non-canonical mutation effects could result in greater efficacy if drugs are restricted only to those with activating mutations. CONFLICT OF INTEREST DESCRIPTION: JRG and DEJ are co-inventors of cyclic STAT3 decoy and have financial interests in STAT3 Therapeutics, Inc. STAT3 Therapeutics, Inc. holds an interest in a cyclic STAT3 decoy oligonucleotide. The remaining authors declare no conflicts.

Type
Basic Science/Methodology
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Association for Clinical and Translational Science 2020