Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T06:06:23.984Z Has data issue: false hasContentIssue false

3373 Modulation of Hedgehog Signaling Alters Immune Infiltration in Pancreatic Cancer

Published online by Cambridge University Press:  26 March 2019

Nina Steele
Affiliation:
University of Michigan School of Medicine
Valerie Irizarry-Negron
Affiliation:
University of Michigan School of Medicine
Veerin Sirihorachai
Affiliation:
University of Michigan School of Medicine
Samantha Kemp
Affiliation:
University of Michigan School of Medicine
Eileen Carpenter
Affiliation:
University of Michigan School of Medicine
Christopher Halbrook
Affiliation:
University of Michigan School of Medicine
Costas Lyssiotis
Affiliation:
University of Michigan School of Medicine
Filip Bednar
Affiliation:
University of Michigan School of Medicine
Timothy Frankel
Affiliation:
University of Michigan School of Medicine
Benjamin Allen
Affiliation:
University of Michigan School of Medicine
Marina Pasca di Magliano
Affiliation:
University of Michigan School of Medicine
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

OBJECTIVES/SPECIFIC AIMS: Pancreatic ductal adenocarcinoma (PDA) has a dismal 5-year survival rate of 9%, making this disease one of the deadliest human malignancies (https://seer.cancer.gov/). Primary barriers to the treatment of pancreatic cancer include extensive stromal interactions and sustained immune suppression. Aberrant Hedgehog (HH) pathway activity is a hallmark of pancreatic tumorigenesis. Tumor-derived HH ligands signal in a paracrine fashion to the surrounding stroma to influence tumor growth. Expression of HH ligands increases during PDA progression, and previous work has shown that genetic deletion of Sonic HH (Shh) from the epithelium of mice with pancreatic tumors results in increased Indian HH (Ihh) expression. This research aims to investigate the translational impact of changes in immune infiltration following deletion of IHH in a preclinical mouse model of pancreatic cancer. METHODS/STUDY POPULATION: Ihh was deleted in tumor cells lines (IhhKO) derived from a genetically engineered mouse model of pancreatic cancer (LSL-KrasG12D/+;LSL-TrpR270H;P48-Cre), using CRISPR/Cas-9 gene editing to assess the role of Ihh in the tumor microenvironment. The level of HH signaling was determined using tumor cell co-cultures with Gli1lacZ fibroblasts (derived from mice with a lacZ reporter allele knocked into the Gli1 locus), in which Beta Galactosidase activity serves as a readout for HH signaling. WT and IhhKO tumor cells were orthotopically transplanted into the pancreas of syngeneic C57BL/6 mice. Human pancreas samples were obtained from surgical resection of pancreatic adenocarcinoma, or fine needle biopsy procedure (FNB). Immune profiling of mouse and human pancreatic tumors was performed using Cytometry Time-of-Flight analysis (CyTOF), and tumor composition was analyzed by single-cell RNA sequencing (scRNA seq). In vitro cultures with pancreatic fibroblasts treated with either WT or IhhKO tumor cell conditioned media (CM) were cultured with bone-marrow derived macrophages to assess tumor crosstalk. RESULTS/ANTICIPATED RESULTS: Tumor cells lacking Ihh were generated through CRISPR/Cas-9 deletion, and this was confirmed by qRT-PCR. Co-culture of IhhKO tumor cells with Gli1lacZ fibroblasts results in decreased Gli1 expression both in vitro and in vivo. Immune profiling revealed that tumors lacking Ihh have significantly fewer tumor associated macrophages (CD11b+/F4/80+/CD206+), resulting in decreased presence of immunosuppressive factors such as arginase 1 and PDL1. Immune phenotyping of human pancreatic tissues revealed similar populations of immunosuppressive myeloid cells present in tumors. In vitro co-cultures demonstrated that, in the presence of bone-marrow derived macrophages, immunosuppressive IL-6 production was reduced in pancreatic fibroblasts cultured with IhhKO-CM, as compared to fibroblasts cultured with WT-CM, providing mechanistic insight into the in vivo phenotype observed. Further, scRNA seq analysis suggests that modulation of HH signaling in the tumor microenvironment alters chemokine and immunomodulatory signaling pathways driven by fibroblasts in the pancreatic tumor microenvironment. DISCUSSION/SIGNIFICANCE OF IMPACT: HH signaling in pancreatic fibroblasts contributes to the establishment of an immune suppressive environment in pancreatic cancer. Combining methods to target HH signaling and immune checkpoint therapy has translational potential in treating pancreatic cancer patients.

Type
Basic/Translational Science/Team Science
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-ncnd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
© The Association for Clinical and Translational Science 2019