Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-28T00:07:37.344Z Has data issue: false hasContentIssue false

3024 Osteocyte-derived CXCL12 is Essential for Load-Induced Bone Formation in Adult Mice

Published online by Cambridge University Press:  26 March 2019

Pamela Cabahug Zuckerman
Affiliation:
New York University - H+H Clinical and Translational Science Institute
Chao Liu
Affiliation:
New York University - H+H Clinical and Translational Science Institute
Emily Fang
Affiliation:
New York University - H+H Clinical and Translational Science Institute
Alesha B Castillo
Affiliation:
New York University - H+H Clinical and Translational Science Institute
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

OBJECTIVES/SPECIFIC AIMS: Our aim is to test whether osteocyte-specific CXCL12 expression is critical to exercise-driven bone formation. METHODS/STUDY POPULATION: All procedures were approved by the NEW YORK UNIVERSITY Institutional Animal Care and Use Committee. We generated male and female mice in which CXCL12 was deleted from OCYs (CXCL12ΔOCY) by crossing CXCL12 floxed mice and 10kb DMP1-Cre transgenic mice (gifts from Drs. Geoffrey Gurtner and Lynda Bonewald, respectively). The 10kb DMP1-Cre has been shown to be robustly expressed in odontoblasts and OCYs, with little to no activity in cells from non-mineralized tissues (Lu+ J Dent Res 2007). Growing male and female mice (n=3-8/group) were given fluorochrome labels every two weeks between 4-16 weeks of age, to monitor the role of CXCL12 during development. A second group, of adult 16-week-old mice (n=5/group), were subjected to tibial axial cyclic loading (1200µɛ, 2Hz, 120cycles, 3days/wk for 2 wks) (Liu+ Bone 2018). Basal and load-induced periosteal (Ps) and endosteal (Es) mineralizing surface (MS/BS, %), mineral apposition (MAR, µm/day) and bone formation rates (BFR/BS, µm3/µm2/year) were calculated (Dempster+ JBMR.2013) at mid-length. RESULTS/ANTICIPATED RESULTS: No significant differences were detected in basal bone formation during development. However, relative load-induced Ps MAR (rMAR) was reduced by 50% in female (p=0.02) and 75% in male (p=0.002) CXCL12ΔOCY mice; and similarly, Ps rBFR/BS was reduced by 50% in female (p=0.01) and 70% in male (p=0.001) CXCL12ΔOCY mice (Figure 1). Es bone formation was not affected by CXCL12 deletion. DISCUSSION/SIGNIFICANCE OF IMPACT: In summary, osteocyte-specific CXCL12 expression plays a critical role in exercise-driven periosteal new bone formation, suggesting that CXCL12 signaling may positively regulate osteogenic differentiation and/or mature osteoblast function. Further underlying mechanisms are currently being explored. Thus, osteocyte-specific CXCL12 signaling may be a promising target to enhance load-induced bone formation in patients with compromised ability to form new bone.

Type
Mechanistic Basic to Clinical
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-ncnd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
© The Association for Clinical and Translational Science 2019