Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-28T15:33:20.024Z Has data issue: false hasContentIssue false

Maternal body composition: methods for measuring short-term changes

Published online by Cambridge University Press:  31 July 2008

N. G. Norgan
Affiliation:
Department of Human Sciences, Loughborough University of Technology, Loughborough, Leicestershire

Summary

The measurement of short-term changes in maternal body composition during the post-partum period under field conditions poses many problems: (1) body composition techniques depend on the constancy of the proportions of components or their physical properties and are less suitable for measuring changes; (2) many of the techniques require expensive, technically sophisticated apparatus that is inappropriate to field conditions in many countries; (3) changes in body composition affect some areas of the body more than others so regional as well as whole body approaches are required. The measurements of body weight, triceps and subscapular skinfold thicknesses and upper arm circumference are essential measurements. These can be supplemented with further skinfold thicknesses and circumferences, and possibly body density and body water measurements. There is little to be gained by transforming anthropometric variables into whole body composition indices in these circumstances.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adair, L. S. (1984) Marginal intake and maternal adaptation in the case of rural Taiwan. In: Energy Intake and Activity, pp. 3335. Edited by Pollitt, E. & Amante, P.. Liss, New York.Google Scholar
Adair, L. S. & Pollitt, E. (1986) Outcome of maternal nutritional supplementation: a comprehensive review of the Bacon Chow study. Am. J. clin. Nutr. 41, 948.CrossRefGoogle Scholar
Almond, D. J., King, R. F. G. J., Burkinshaw, L., Oxby, C. B. & McMahon, M. J. (1984) Measurement of short-term changes in the fat content of the body: a comparison of three methods in patients receiving intravenous nutrition. Br. J. Nutr. 52, 215.CrossRefGoogle Scholar
Brewer, M. M., Bates, M. R. & Vannoy, L. P. (1989) Post-partum changes in maternal weight and body fat deposits in lactating versus non-lactating women. Am. J. clin. Nutr. 49, 259.CrossRefGoogle Scholar
Butte, N. F., Wills, C., O'brian, Smith E. & Garza, C. (1985) Prediction of body density from skinfold measurements in lactating women. Br. J. Nutr. 53, 485.CrossRefGoogle ScholarPubMed
Department of Health (1991) Dietary Reference Values for Food Energy and Nutrients for the United Kingdom, p. 32. Reports on Health and Society, 41. HM Stationery Office, London.Google Scholar
Deurenberg, P., Westraate, J. A. & Hautvast, J. G. A. J. (1989) Changes in fat-free mass during weight loss measured by bioelectrical impedance and by densitometry. Am. J. clin. Nutr. 49, 33.CrossRefGoogle ScholarPubMed
Deurenberg, P., Westraate, J. A. & Van Der Kooy, K. (1989) Body composition changes assessed by bioelectrical impedance measurements. Am. J. clin. Nutr. 49, 401.CrossRefGoogle ScholarPubMed
Diaz, E. O., Vitlar, J., Immink, M. & Gonzales, T. (1989) Bioimpedance or anthropometry? Eur. J. clin. Nutr. 43, 129.Google ScholarPubMed
Dugdale, A. E. & Eaton-Evans, J. (1989) The effect of lactation and other factors on post-partum changes in body weight and triceps skinfold thickness. Br. J. Nutr. 61, 149.CrossRefGoogle ScholarPubMed
Durnin, J. V. G. A. (1987) Energy requirements of pregnancy: an integration of longitudinal data from the five-country study. Lancet, ii, 1131.CrossRefGoogle Scholar
Durnin, J. V. G. A. & Womersley, J. (1974) Body fat assessed from total body density and its estimation from skinfold thickness: measurements on 481 men and women aged from 18 to 72 years. Br. J. Nutr. 32, 77.CrossRefGoogle Scholar
Elia, M., Parkinson, S. A. & Diaz, E. O. (1990) Evaluation of near-infrared reactance as a method for predicting body composition. Eur. J. clin. Nutr. 44, 113.Google Scholar
Forbes, G. B. (1987) Human Body Composition: Growth, Aging, Nutrition and Activity. Springer-Verlag, New York.CrossRefGoogle Scholar
Frisancho, A. R. (1990) Anthropometric Standards for the Assessment of Growth and Nutritional Status. University of Michigan Press, Ann Arbor.CrossRefGoogle Scholar
Garrow, J. S. (1987) Methods for measuring changes in body composition. In: Human Body Composition and Fat Distribution, pp. 7580. Edited by Norgan, N. G.. Euro-Nut Report No. 8, Wageningen, The Netherlands.Google Scholar
Garrow, J. S., Stalley, S., Diethelm, R., Pittet, P., Hesp, R. & Halliday, D. (1979) A new method for measuring body density of obese adults. Br. J. Nutr. 42, 173.CrossRefGoogle ScholarPubMed
Himes, J. H., Roche, A. F. & Webb, P. (1980) Fat areas as estimates of total body fat. Am. J. clin. Nutr. 33, 2093.CrossRefGoogle ScholarPubMed
Johnston, F. E. (1982) Relationships between body composition and anthropometry. Hum. Biol. 54, 221.Google ScholarPubMed
King, R. F. G. J. (1987) The assessment of short-term changes in body fat by skinfold, body compartment and gas exchange measurement. In: Human Body Composition and Fat Distribution, pp. 8191. Edited by Norgan, N. G.. Euro-Nut Report No. 8, Wageningen, The Netherlands.Google Scholar
Lohman, T. S., Roche, A. F. & Martorell, R. (1988) Anthropometric Standardisation Reference Manual. Human Kinetics, Champaign, Illinois.Google Scholar
Martin, A. D., Ross, W. D., Drinkwater, D. T. & Clarys, J. P. (1985) Prediction of body fat by skinfold caliper: assumptions and cadaver evidence. Int. J. Obesity, 9 (Suppl. 1), 31.Google ScholarPubMed
Mazess, R. B. (1991) Do bioimpedance changes reflect weight, not composition? Am. J. clin. Nutr. 51, 178.CrossRefGoogle Scholar
McNeil, G., Fowler, P. A., Maugham, R. J., McGaw, B. A., Fuller, M. F., Gvozdanovic, D. & Gvozdanovic, S. (1991) Body fat in lean and overweight women estimated by six methods. Br. J. Nutr. 65, 95.CrossRefGoogle Scholar
Murgatroyd, P. R. & Coward, W. A. (1989) An improved method for estimating changes in whole-body fat and protein mass in man. Br. J. Nutr. 62, 311.CrossRefGoogle ScholarPubMed
Norgan, N. G. & Ferro-Luzzi, A. (1985) The estimation of body density in men: are general equations general? Ann. hum. Biol. 12, 1.CrossRefGoogle ScholarPubMed
Norgan, N. G., Ferro-Luzzi, A. & Durnin, J. V. G. A. (1982) The body composition of New Guinean adults in contrasting environments. Ann. hum. Biol. 9, 343.CrossRefGoogle ScholarPubMed
Norgan, N. G. & Jones, P. R. M. (1990) Anthropometry and body composition. In: Handbook of Methods for the Measurement of Work Performance, Physical Fitness and Energy Expenditure in Tropical Populations, pp. 90115. Edited by Collins, K. J.. International Union of Biological Sciences, Paris.Google Scholar
Ohlin, A. & Rossner, S. (1990) Maternal body weight development after pregnancy. Int. J. Obesity, 14, 159.Google Scholar
Prentice, A. M., Whitehead, R. G., Roberts, S. B. & Paul, A. A. (1981) Long-term energy balance in child-bearing Gambian women. Am. J. clin. Nutr. 34, 2790.CrossRefGoogle ScholarPubMed
Quandt, S. A. (1983) Changes in maternal post-partum adiposity and infant feeding patterns. Am. J. phys. Anthropol. 60, 455.CrossRefGoogle ScholarPubMed
Schutz, Y., Lechtig, A. & Bradfield, R. B. (1980) Energy expenditure and food intake of lactating women in Guatemala. Am. J. clin. Nutr. 33.CrossRefGoogle ScholarPubMed
Shephard, R. J. (1991) Body Composition in Biological Anthropology. Cambridge University Press, Cambridge.Google Scholar
Thomson, A. M., Billewicz, W. Z., Thompson, B. & McGregor, I. A. (1966) Body weight changes during pregnancy and lactation in rural African (Gambian) women. J. Obstet. Gynaec. Br. Commonw. 73, 724.CrossRefGoogle ScholarPubMed
Webster, J. D., Hesp, R. & Garrow, J. S. (1984) The comparison of excess weight in obese women estimated by body density, total body water, and total body potassium. Hum. Nutr. din. Nutr. 38C, 299.Google Scholar