Published online by Cambridge University Press: 09 January 2014
This paper investigates whether community-level wealth inequality predicts HIV serostatus using DHS household survey and HIV biomarker data for men and women ages 15–59 pooled from six sub-Saharan African countries with HIV prevalence rates exceeding 5%. The analysis relates the binary dependent variable HIV-positive serostatus and two weighted aggregate predictors generated from the DHS Wealth Index: the Gini coefficient, and the ratio of the wealth of households in the top 20% wealth quintile to that of those in the bottom 20%. In separate multilevel logistic regression models, wealth inequality is used to predict HIV prevalence within each statistical enumeration area, controlling for known individual-level demographic predictors of HIV serostatus. Potential individual-level sexual behaviour mediating variables are added to assess attenuation, and ordered logit models investigate whether the effect is mediated through extramarital sexual partnerships. Both the cluster-level wealth Gini coefficient and wealth ratio significantly predict positive HIV serostatus: a 1 point increase in the cluster-level Gini coefficient and in the cluster-level wealth ratio is associated with a 2.35 and 1.3 times increased likelihood of being HIV positive, respectively, controlling for individual-level demographic predictors, and associations are stronger in models including only males. Adding sexual behaviour variables attenuates the effects of both inequality measures. Reporting eleven plus lifetime sexual partners increases the odds of being HIV positive over five-fold. The likelihood of having more extramarital partners is significantly higher in clusters with greater wealth inequality measured by the wealth ratio. Disaggregating logit models by sex indicates important risk behaviour differences. Household wealth inequality within DHS clusters predicts HIV serostatus, and the relationship is partially mediated by more extramarital partners. These results emphasize the importance of incorporating higher-level contextual factors, investigating behavioural mediators, and disaggregating by sex in assessing HIV risk in order to uncover potential mechanisms of action and points of preventive intervention.