Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-02T22:56:35.016Z Has data issue: false hasContentIssue false

Molecular genetic research on IQ: can it be done? Should it be done?

Published online by Cambridge University Press:  31 July 2008

Jo Daniels
Affiliation:
Division of Psychological Medicine, University of Wales College of Medicine, Heath Park, Cardiff CF4 4XN
Peter McGuffin
Affiliation:
Division of Psychological Medicine, University of Wales College of Medicine, Heath Park, Cardiff CF4 4XN
Mike Owen
Affiliation:
Division of Psychological Medicine, University of Wales College of Medicine, Heath Park, Cardiff CF4 4XN

Extract

An obvious requirement before embarking on molecular genetic investigation of a trait is prior evidence from ‘classic’ genetic studies that there is indeed a genetic component. Many behavioural traits are familial and these range from comparatively uncommon single gene disorders such as Huntington's disease which has a typical mendelian dominant pattern of transmission, to much commoner characteristics such as career choice or religious denomination which, it might be assumed, are heavily influenced by cultural factors. In between, there is a wide range of attributes including personality type, cognitive ability and liability to common disorders such as depression, that show a tendency to run in families, and which could conceivably be explained by shared genes, shared environment or a combination of the two.

Type
Session 3: Genetic Issues
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Asada, Y., Varnum, D. S., Frankel, W. N. & Nadeau, J. H. (1994) A mutation in the Ter gene causing increased susceptibility to testicular teratomas maps to mouse chromosome 18. Nat. Genet. 6, 363368.CrossRefGoogle ScholarPubMed
Benjamin, J., Li, L., Patterson, C., Greenberg, B. D., Murphy, D. L. & Hamer, D. H. (1996) Population and familial association between the D4 dopamine receptor gene and measures of novelty seeking. Nature Genet. 12, 8184.CrossRefGoogle ScholarPubMed
Botstein, D., White, R. L., Sholnick, M. H. & Davies, R. W. (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. hum. Genet. 32, 314331.Google Scholar
Bouchard, T. J., Lykken, D. T., Mcgue, M., Segal, N. & Tellegen, A. (1990) Sources of human psychological differences; the Minnesota study of twins reared apart. Science, 250, 223228.CrossRefGoogle ScholarPubMed
Bouchard, T. J. & McGue, M. (1981) Familial studies of intelligence: a review. Science, 212, 10551059.CrossRefGoogle ScholarPubMed
Cardon, L. R., Smith, S. D., Fulker, D. W., Kimberling, W. J., Pennington, B. F. & Defries, J. C. (1994) Quantitative trait reading disability on chromosome 6. Science, 266, 276279.CrossRefGoogle ScholarPubMed
Carmi, R., Rokhlina, T., Kwitek-Black, A. E., Elbedour, K., Nishimura, D., Stone, E. M. & Sheffield, V. C. (1995) Use of a DNA pooling strategy to identify a human obesity syndrome locus on chromosome 15. Hum. mol. Genet. 4, 913.Google Scholar
Corder, E. H., Saunders, A. M., Strittmatter, W. J., Schmechel, D. E., Gaskell, P. C., Small, G. W., Roses, A. D., Haines, J. L. & Pericak-Vance, M. A. (1993) Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. Science, 261, 921923.CrossRefGoogle ScholarPubMed
Cordell, H. J. & Todd, J. A. (1995) Multifactorial inheritance in type 1 diabetes. Trends in Genetics, 11, 499504.Google Scholar
Daniels, J. K., Owen, M. J., McGuffin, P., Thompson, L., Detterman, D. K., Chorney, M., Chorney, K., Smith, D., Skijder, P., Vignetti, S., McClearn, G. E. & Plomin, R. (1994) IQ and variation in the number of fragile X (FMR-1) CGG repeats: no association in the general population. Intelligence, 19, 4550.Google Scholar
Daniels, J. K., Williams, N. M., Plomin, R., McGuffin, P. & Owen, M. J. (1995) Selective DNA pooling using automated technology—a rapid technique for allelic association studies in quantitative traits and complex diseases. Psychol. Genet. 5, 3940.Google Scholar
Donis-Keller, H., Green, P., Helms, C., Cartinhour, S., Weiffenbach, B., Stephens, K., Keith, T. P. & Bowden, D. W. (1987) A genetic linkage map of the human genome. Cell, 51, 319337.Google Scholar
Dunnington, E. A., Gal, O., Plotsky, Y., Haberfield, A., Kirk, T., Goldberg, A., Lavi, U., Cahaner, A., Siegel, P. B. & Hillel, J. (1990) DNA fingerprints of chickens selected for high and low body weight for 31 generations. Anim. Genet. 21, 247257.CrossRefGoogle ScholarPubMed
Ebstein, R. P., Novick, O., Umansky, R., Priel, B., Osher, Y., Blaine, D., Bennett, E. R., Nemanov, L., Katz, M. & Belmaker, R. H. (1996) Dopamine D4 receptor (D4DR) exon III polymorphism associated with the human personality trait of novelty seeking. Nature Genet. 12, 7880.CrossRefGoogle ScholarPubMed
Edwards, J. H. (1965) The meaning of the associations between blood groups and disease. Ann. hum. Genet. 29, 7783.CrossRefGoogle Scholar
Falk, C. T. & Rubenstein, P. (1987) Haplotype relative risks: an easy reliable way to construct a proper control sample for risk calculations. Ann. hum. Genet. 51, 227233.Google Scholar
Frankel, W. N. (1995) Taking stock of complex trait genetics in mice. Trends in Genetics, 11, 471476.CrossRefGoogle ScholarPubMed
Fu, Y-H., Kurl, D. P., Pizzuti, A., Peretti, M., Sutcliffe, J. S., Richards, S., Verkerk, A. J., Holden, J. J., Fenwick, R. G. & Warren, S. T. (1991) Variation of the CGG repeat at the fragile X site results in genetic instability: resolution of the Sherman paradox. Cell, 67, 10471058.CrossRefGoogle ScholarPubMed
Fulker, D. W. & Cardon, L. R. (1994) A sub-pair approach to interval mapping of quantitative trait loci. Am. I hum. Genet. 54, 10921103.Google ScholarPubMed
Haseman, J. K. & Elston, R. C. (1972) The investigation of linkage between a quantitative trait and a marker locus. Behav. Genet. 2, 319.Google Scholar
Marsh, D. G., Neely, J. D., Breazeale, D. R., Ghosh, B., Friedhoff, L. R., Ehrlichkautzky, F., Schou, C., Krishnaswamy, G. & Beaty, T. H. (1994) Linkage analysis of IL4 and other chromosome 5q31.1 markers and total serum immunoglobulin-E concentrations. Science, 264, 11521156.Google Scholar
McCartney, K., Harris, M. J. & Bernieri, F. (1990) Growing up and growing apart—a developmental metaanalysis of twin studies. Psychol. Bull. 107, 226237.Google Scholar
McGuffin, P. & Buckland, P. (1991) Major genes, minor genes and molecular neurobiology of mental illness; a comment on ‘Quantitative trait loci and psychopharmacology’ by Plomin, McClearn and Gora-Maslak. J. Psychopharmacol. 5, 1822.Google Scholar
Morton, N. E. (1955) In: Outline of Genetic Epidemiology. Karger, Basel.Google Scholar
Mullis, K., Faloona, K., Scharf, S., Saiki, R., Horn, G. & Erlich, H. (1986) Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb. Svmp. Quant. Biol. 51, 263273.Google Scholar
Plomin, R. & Loehlin, J. C. (1989) Direct and indirect IQ heritability estimates—a puzzle. Behav. Genet. 19, 331342.Google Scholar
Plomin, R., McClearn, G. E., Smith, D. L., Vignetti, S., Chorney, M. J., Chorney, K., Venditti, C. P., Kasarda, S., Thompson, L. A., Detterman, D. K., Daniels, J., Owen, M. J. & McGuffin, P. (1994) DNA markers associated with high versus low IQ: the IQ QTL project. Behav. Genet. 24, 107118.CrossRefGoogle ScholarPubMed
Plomin, R., McClearn, G. E., Smith, D. L., Skuder, P., Vignetti, S., Chorney, M. J., Chorney, K., Kasarda, S., Thompson, L. A., Detterman, D. K., Daniels, J., Owen, M. J. & McGuffin, P. (1995) Allelic associations between 100 DNA markers and high versus low IQ. Intelligence, 21, 3148.CrossRefGoogle Scholar
Owen, M. J., Liddell, M. B. & McGuffin, p. (1994) ApoE and Alzheimers disease. Br. med. J. 308, 672673.Google Scholar
Reiss, A. L., Freind, L., Abrams, M., Boehm, C. & Kazazian, H. (1993) Neurobehavioral effects of the fragile X premutation in adult women: a controlled study. Am. J. hum. Genet. 52, 884894.Google Scholar
Sobell, J. L., Heston, L. L. & Sommer, S. S. (1992) Delineation of genetic predisposition to multifactorial disease—a general approach on the threshold of feasibility. Genomics, 12, 16.CrossRefGoogle ScholarPubMed
Skuder, P., Plomin, R., McClearn, G. E., Smith, D. L., Vignetti, S., Chorney, M. J., Chorney, K., Kasarda, S., Thompson, L. A., Detterman, D. K., Daniels, J., Owen, M. J. & McGuffin, P. (1995) A polymorphism in mitochrondrial DNA associated with IQ?. Intelligence, 21, 112.Google Scholar
Stuber, C. W. (1995) Mapping and manipulating quantitative traits in maize. Trends in Genetics, 11, 12. 477481.CrossRefGoogle ScholarPubMed
Taylor, R. (1922) Mitochondrial DNA may hold a key to human degenerative diseases. J. NIH. Res. 6, 6266.Google Scholar
Thompson, L. A., Detterman, D. K. & Plomin, R. (1991) Associations between cognitive abilities and scholastic achievement: genetic overlap but environmental differences. Psychol. Sci. 2, 158165.Google Scholar
Verkerk, A. J. M. H., Pieretti, M., Sutcliffe, J. S., Fu, Y-H., Kuhl, D. P., Pizzuti, A., Reiner, O., Richards, S., Victoria, M. F., Zhang, F., Eussen, B. E., Van Ommen, G-J., Blonden, L. A., Riggins, G. J., Chastain, J. L., Kunst, C. B., Galjaard, H., Caskey, C. T., Nelson, D., Oostra, B. & Warren, S. T. (1991) Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell, 65, 905914.CrossRefGoogle ScholarPubMed
Weissenback, J., Gyapay, G., Dib, C., Vignal, A., Morissette, J., Millasseau, P., Vaysseix, G. & Lathrop, P. (1992) A second-generation linkage map of the human genome. Nature, 359, 794801.CrossRefGoogle Scholar