Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-07T18:42:24.686Z Has data issue: false hasContentIssue false

Wicksell's corpuscle problem in spherical spaces

Published online by Cambridge University Press:  14 July 2016

M. Zähle*
Affiliation:
University of Jena
*
Postal address: Friedrich-Schiller-Universität Jena, Sektion Mathematik, UHH, Jena 6900, GDR.

Abstract

Wicksell's problem of unfolding ball size distributions is solved for the case of spherical spaces of curvature K > 0. The well-known formulas for the euclidean case result as limits if K → 0. The paper is completed by a brief discussion of some computer-aided statistical procedures.

Type
Short Communications
Copyright
Copyright © Applied Probability Trust 1990 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cruz-Orive, L. M. (1983) Distribution-free estimation of sphere size distribution from slabs showing overprojection and truncation, with a review of previous methods. J. Microscopy 131, 265290.CrossRefGoogle Scholar
Cruz-Orive, L. M. (1988) Editorial. J. Microscopy 151, 12.Google Scholar
Jensen, E. B., Baddeley, A. J., Gunderson, H. J. and Sundberg, H. (1985) Recent trends in stereology. Internat. Statist. Rev. 53, 99108.CrossRefGoogle Scholar
Möller, O. (1988) Theorie und Praxis des Wicksellschen Korpuskel-problems. Diplomarbeit. Friedrich-Schiller-Universität Jena, Sektion Mathematik.Google Scholar
Möller, O. (1989) A fast statistical procedure solving Wicksell's corpuscle problem. EIK 25, 581585.Google Scholar
Santaló, L. A. (1976) Integral Geometry and Geometric Probability. Addison-Wesley, Reading Mass.Google Scholar
Stoyan, D., Kendall, W. S. and Mecke, J. (1987) Stochastic Geometry and its Applications. Wiley, Chichester.Google Scholar
Tanasi, C. (1979) Statistical distribution of convex spherical domains in the unit sphere. Rand. Sem. Math. Univers. Politecn. Torino 37, 139144.Google Scholar
Taylor, C. C. (1983) A new method for unfolding sphere size distributions. J. Microscopy 132, 5766.CrossRefGoogle Scholar
Wicksell, S. D. (1925) The corpuscle problem I. Biometrika 17, 8489.Google Scholar