Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-26T21:21:27.214Z Has data issue: false hasContentIssue false

Weak convergence of stochastic integrals with respect to the state occupation measure of a Markov chain

Published online by Cambridge University Press:  23 June 2021

H. M. Jansen*
Affiliation:
Delft University of Technology
*
*Postal address: Delft Institute of Applied Mathematics, Delft University of Technology, Van Mourik Broekmanweg 6, 2628 XE Delft, the Netherlands. Email address: [email protected]

Abstract

Our aim is to find sufficient conditions for weak convergence of stochastic integrals with respect to the state occupation measure of a Markov chain. First, we study properties of the state indicator function and the state occupation measure of a Markov chain. In particular, we establish weak convergence of the state occupation measure under a scaling of the generator matrix. Then, relying on the connection between the state occupation measure and the Dynkin martingale, we provide sufficient conditions for weak convergence of stochastic integrals with respect to the state occupation measure. We apply our results to derive diffusion limits for the Markov-modulated Erlang loss model and the regime-switching Cox–Ingersoll–Ross process.

Type
Original Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press on behalf of Applied Probability Trust

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aggoun, L. and Elliott, R. (2004). Measure Theory and Filtering. Cambridge University Press.10.1017/CBO9780511755330CrossRefGoogle Scholar
Arapostathis, A., Das, A., Pang, G. and Zheng, Y. (2019). Optimal control of Markov-modulated multiclass many-server queues. Stoch. Sys. 9, 155181.10.1287/stsy.2019.0029CrossRefGoogle Scholar
Coolen-Schrijner, P. and van Doorn, E. A. (2002). The deviation matrix of a continuous-time Markov chain. Prob. Eng. Inf. Sci. 16, 351366.10.1017/S0269964802163066CrossRefGoogle Scholar
Cox, J. C., Ingersoll, J. E. Jr. and Ross, S. A. (1985). A theory of the term structure of interest rates. Econometrica 53, 385407.10.2307/1911242CrossRefGoogle Scholar
Jacod, J. and Shiryaev, A. N. (2003). Limit Theorems for Stochastic Processes, 2nd ed. Springer, Berlin.10.1007/978-3-662-05265-5CrossRefGoogle Scholar
Jakubowski, A., Mémin, J. and Pages, G. (1989). Convergence en loi des suites d’intégrales stochastiques sur l’espace $\mathbb{D}^{1}$ de Skorokhod. Prob. Theory Relat. Fields 81, 111137.10.1007/BF00343739CrossRefGoogle Scholar
Jansen, H. M. (2018). Scaling limits for modulated infinite-server queues and related stochastic processes. PhD thesis, University of Amsterdam and Ghent University.Google Scholar
Karatzas, I. and Shreve, S. E. (1998). Brownian Motion and Stochastic Calculus, 2nd ed. Springer, New York.CrossRefGoogle Scholar
Kurtz, T. G. and Protter, P. (1991). Weak limit theorems for stochastic integrals and stochastic differential equations. Ann. Prob. 19, 10351070.CrossRefGoogle Scholar
Kurtz, T. G. and Protter, P. (1991). Wong–Zakai corrections, random evolutions, and simulation schemes for SDE’s. In Stochastic Analysis: Liber Amicorum for Moshe Zakai. ed. E. Meyer-Wolf, E. Merzbach, and A. Shwartz. Academic Press, Boston, pp. 331346.10.1016/B978-0-12-481005-1.50023-5CrossRefGoogle Scholar
Mandjes, M., Taylor, P. G. and De Turck, K. (2017). The Markov-modulated Erlang loss system. Performance Evaluation 116, 5369.10.1016/j.peva.2017.08.005CrossRefGoogle Scholar
Pang, G., Talreja, R. and Whitt, W. (2007). Martingale proofs of many-server heavy-traffic limits for Markovian queues. Prob. Surv. 4, 193267.10.1214/06-PS091CrossRefGoogle Scholar
Pang, G. and Whitt, W. (2010). Continuity of a queueing integral representation in the M $_{1}$ topology. Ann. Appl. Prob. 20, 214237.10.1214/09-AAP611CrossRefGoogle Scholar
Reed, J., Ward, A. R. and Zhan, D. (2013). On the generalized drift Skorokhod problem in one dimension. J. Appl. Prob. 50, 1628.10.1017/S0021900200013085CrossRefGoogle Scholar
Whitt, W. (2002). Stochastic-Process Limits: An Introduction to Stochastic-Process Limits and Their Application to Queues. Springer, New York.10.1007/b97479CrossRefGoogle Scholar
Whitt, W. (2007). Proofs of the martingale FCLT. Prob. Surv. 4, 268302.10.1214/07-PS122CrossRefGoogle Scholar