Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-26T23:05:56.186Z Has data issue: false hasContentIssue false

Variance estimates for random disc-polygons in smooth convex discs

Published online by Cambridge University Press:  16 January 2019

Ferenc Fodor*
Affiliation:
University of Szeged
Viktor Vígh*
Affiliation:
University of Szeged
*
* Postal address: Bolyai Institute, University of Szeged, Aradi vértanúk tere 1, 6720 Szeged, Hungary.
* Postal address: Bolyai Institute, University of Szeged, Aradi vértanúk tere 1, 6720 Szeged, Hungary.

Abstract

In this paper we prove asymptotic upper bounds on the variance of the number of vertices and the missed area of inscribed random disc-polygons in smooth convex discs whose boundary is C+2. We also consider a circumscribed variant of this probability model in which the convex disc is approximated by the intersection of random circles.

Type
Research Papers
Copyright
Copyright © Applied Probability Trust 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Bárány, I. (2008). Random points and lattice points in convex bodies. Bull. Amer. Math. Soc. 45, 339365.Google Scholar
[2]Bárány, I. and Reitzner, M. (2010). On the variance of random polytopes. Adv. Math. 225, 19862001.Google Scholar
[3]Bárány, I. and Steiger, W. H. (2013). On the variance of random polygons. Comput. Geom. 46, 173180.Google Scholar
[4]Bárány, I. and Vu, V. H. (2007). Central limit theorems for Gaussian polytopes. Ann. Prob. 35, 15931621.Google Scholar
[5]Bárány, I., Fodor, F. and Vígh, V. (2010). Intrinsic volumes of inscribed random polytopes in smooth convex bodies. Adv. Appl. Prob. 42, 605619.Google Scholar
[6]Bárány, I., Hug, D., Reitzner, M. and Schneider, R. (2017). Random points in halfspheres. Random Structures Algorithms 50, 322.Google Scholar
[7]Bezdek, K. (2018). From r-dual sets to uniform contractions. Aequationes Math. 92, 123134.Google Scholar
[8]Bezdek, K. and Connelly, R. (2002). Pushing disks apart—the Kneser-Poulsen conjecture in the plane. J. Reine Angew. Math. 553, 221236.Google Scholar
[9]Bezdek, K. and Naszódi, O. (2018). The Kneser–Poulsen conjecture for special contractions. Discrete Comput. Geom. 60, 967980.Google Scholar
[10]Bezdek, K., Lángi, Z., Naszódi, M. and Papez, P. (2007). Ball-polyhedra. Discrete Comput. Geom. 38, 201230.Google Scholar
[11]Böröczky, K. J. and Schneider, R. (2010). The mean width of circumscribed random polytopes. Canad. Math. Bull. 53, 614628.Google Scholar
[12]Böröczky, K. J., Fodor, F. and Hug, D. (2010). The mean width of random polytopes circumscribed around a convex body. J. Lond. Math. Soc. 81, 499523.Google Scholar
[13]Böröczky, K. J., Fodor, F., Reitzner, M. and Vígh, V. (2009). Mean width of random polytopes in a reasonably smooth convex body. J. Multivariate Anal. 100, 22872295.Google Scholar
[14]Efron, B. and Stein, C. (1981). The jackknife estimate of variance. Ann. Statist. 9, 586596.Google Scholar
[15]Fejes T’oth, G. and Fodor, F. (2015). Dowker-type theorems for hyperconvex discs. Period. Math. Hungar. 70, 131144.Google Scholar
[16]Fodor, F. and Vígh, V. (2012). Disc-polygonal approximations of planar spindle convex sets. Acta Sci. Math. 78, 331350.Google Scholar
[17]Fodor, F., Hug, D. and Ziebarth, I. (2016). The volume of random polytopes circumscribed around a convex body. Mathematika 62, 283306.Google Scholar
[18]Fodor, F., Kevei, P. and Vígh, V. (2014). On random disc polygons in smooth convex discs. Adv. Appl. Prob. 46, 899918.Google Scholar
[19]Fodor, F., Kurusa, Á. and Vígh, V. (2016). Inequalities for hyperconvex sets. Adv. Geom. 16, 337348.Google Scholar
[20]Jahn, T., Martini, H. and Richter, C. (2017). Ball convex bodies in Minkowski spaces. Pacific J. Math. 289, 287316.Google Scholar
[21]Mayer, A. E. (1935). Eine Überkonvexität. Math. Z. 39, 511531.Google Scholar
[22]Paouris, G. and Pivovarov, P. (2017). Random ball-polyhedra and inequalities for intrinsic volumes. Monatsh. Math. 182, 709729.Google Scholar
[23]Reitzner, M. (2003). Random polytopes and the Efron-Stein jackknife inequality. Ann. Prob. 31, 21362166.Google Scholar
[24]Reitzner, M. (2005). Central limit theorems for random polytopes. Prob. Theory Relat. Fields 133, 483507.Google Scholar
[25]Rényi, A. and Sulanke, R. (1963). Über die konvexe Hülle von n zufällig gewählten Punkten. Z. Wahrscheinlichkeitsth. 2, 7584.Google Scholar
[26]Rényi, A. and Sulanke, R. (1963). Über die konvexe Hülle von n zufällig gewählten Punkten, II. Z. Wahrscheinlichkeitsth. 3, 138147.Google Scholar
[27]Santaló, L. A. (1946). On plane hyperconvex figures. Summa Brasil. Math. 1, 221239.Google Scholar
[28]Schneider, R. (2008). Recent results on random polytopes. Boll. Unione Mat. Ital. 1, 1739.Google Scholar
[29]Schneider, R. (2014). Convex Bodies: The Brunn-Minkowski Theory, 2nd end. Cambridge University Press.Google Scholar
[30]Schneider, R. (2017). Discrete aspects of stochastic geometry. In Handbook of Discrete and Computational Geometry, 3rd edn. CRC Press, Boca Raton, FL, pp. 299329.Google Scholar
[31]Schneider, R. and Weil, W. (2008). Stochastic and Integral Geometry. Springer, Berlin.Google Scholar
[32]Schreiber, T. and Yukich, J. E. (2008). Variance asymptotics and central limit theorems for generalized growth processes with applications to convex hulls and maximal points. Ann. Prob. 36, 363396.Google Scholar
[33]Thäle, C., Turchi, N. and Wespi, F. (2018). Random polytopes: central limit theorems for intrinsic volumes. Proc. Amer. Math. Soc. 146, 30633071.Google Scholar
[34]Turchi, N. and Wespi, F. (2018). Limit theorems for random polytopes with vertices on convex surfaces. Adv. Appl. Prob, 50, 12271245.Google Scholar
[35]Vu, V. H. (2005). Sharp concentration of random polytopes. Geom. Funct. Anal. 15, 12841318.Google Scholar
[36]Vu, V. H. (2006). Central limit theorems for random polytopes in a smooth convex set. Adv. Math. 207, 221243.Google Scholar
[37]Weil, W. and Wieacker, J. A. (1993). Stochastic geometry. In Handbook of Convex Geometria, Vol B, North-Holland, Amsterdam, pp. 13911438.Google Scholar